Продвинутая 3D графика в пакете Maya
Dпринтеры
3D-принтеры
Еще более изумительная технология позволяет получить физический объект из трехмерной модели. Лидирующие позиции занимает технология, называемая лазерной агломерацией (laser sintering) — это уплотнение при помощи лазерного луча засвеченных участков в фоточувствительной вязкой жидкости янтарного цвета. Небольшая платформа в жидкости вместе с частично созданным объектом медленно опускается после каждого прохода лазера, чтобы создать следующий слой заготовки. В результате получается модель вашего объекта, сделанная из янтарного полимера.
Такие устройства стоят десятки тысяч долларов и в основном находятся во владении специальных бюро обслуживания. Стоимость изготовления объекта зависит от его размера и сложности модели. Кроме того, это очень медленная процедура, создание большого объекта может занять несколько дней.
Dсканеры
3D-сканеры
Разве не прекрасно было бы иметь возможность отсканировать трехмерную модель автомобиля, вместо того чтобы вручную кропотливо моделировать каждую из его частей? На самом деле существует ряд технологий, с помощью которых подобные задачи вполне выполнимы, но они имеют отрицательные стороны. Самым быстрым, но и самым дорогим методом является лазерное сканирование. Его стоимость колеблется от нескольких тысяч до нескольких сот тысяч долларов. При сканировании некоторой области объекта формируется массив данных. После этого результаты множественного сканирования остается соединить друг с Другом, и внешняя поверхность объекта будет готова. Массив данных имеет очень большую плотность, так что в результате пы получите огромную сетку, требующую слишком длительного редактирования. Потому данный метод вряд ли можно использовать для трехмерного моделирования.
Устройство перьевого ввода для получения информации о форме объекта использует указатель. Такие устройства дешевле лазерных сканеров, но для получения детальной картинки нужно аккуратно снять тысячи точек. В этом случае редактировать объект приходится намного меньше, но сам процесс взятия пробы с 10 000 точек модели занимает массу времени. Также проблемой является погрешность получения данных, в результате которой вместо совершенно гладкой поверхности автомобиля вы получите вмятины и выступающие части.
Аппаратное обеспечение
Аппаратное обеспечение
После включения компьютера процессор запускает маленькую программу, хранящуюся в микросхеме BIOS (Basic Input-Output System — базовая система ввода-вывода), которая объясняет материнской плате, как распознать подключенные устройства, такие как жесткий диск или клавиатуру. Обычно после этого начинается загрузка операционной системы (ОС) с жесткого диска. Активные программы при этом загружаются с диска в оперативную память компьютера (RAM), кроме того, сама операционная система также использует для своих нужд некоторое количество оперативной памяти. Если какая-либо программа запрашивает больше свободной памяти, чем имеется в наличии в системе, то ОС выгружает часть содержимого RAM на жесткий диск в специальный файл подкачки (swap-file). Так как обращение к жесткому диску заметно медленнее, чем к RAM, то при использовании подкачки работа программ замедляется.
Цветовые модели HSV и RGB
Цветовые модели HSV и RGB
Настройку цвета в Maya можно производить в режимах HSV и RGB, как показано на Рисунок 1.3. В режиме RGB независимо отдельно указываются доли каждого из цветовых компонентов — Red (Красный), Green (Зеленый), Blue (Синий). За 100% обычно принимается значение 1 или 255. Более наглядным является режим HSV. Эта аббревиатура образована от трех слов: Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность). Цветовой тон задает оттенок цвета. Например, нежно-розовый цвет имеет красный цветовой оттенок. Насыщенность определяет чистоту цвета в сравнении с оттенками серого. Чем менее насыщен цвет, тем ближе он к серому. Интенсивность задает яркость цвета в сравнении с черным. Часто ее рассматривают как степень смешения выбранного цвета с черным.
Деление изображения
Деление изображения
Размещение основного объекта точно в центре картины не всегда дает наилучший результат. На картинах знаменитых мастеров можно обнаружить некоторые интересные закономерности. Общий принцип композиции состоит в делении картины на три части по горизонтали или вертикали и размещении изображения в одной из них, например, как показано на Рисунок 1.6.
Такое деление помогает избежать скучных симметричных композиций и заставляет художника подумать о том, в какую именно часть картины поместить ключевой объект. Объект совершенно один в огромном мире? Тогда его желательно расположить в нижней трети кадра. Вы хотите сделать крупный план главного действующего лица? Тогда для него лучше всего подойдут верхние две трети по вертикали. Массу примеров и объяснений на эту тему можно найти в книгах по истории искусства.
Движение камеры
Движение камеры
В трехмерном моделировании не существует ограничений для движения камеры. Она может проходить сквозь замочные скважины, перемещаться со скоростью реактивного самолета, внезапно останавливаться или вращаться вокруг своей оси со скоростью сто оборотов в секунду.
Однако если вы не хотите вызвать у зрителей неприятных ощущений, желательно придерживаться принципов, которые используются операторами в реальной жизни. Например, поворот камеры вокруг своей оси должен осуществляться очень медленно. Прибегать к крену или к вертикальному панорамированию стоит только для создания специальных эффектов.
В анимации также желательно придавать камерам некоторую массу, чтобы избежать мгновенного начала и завершения движения. Камера должна приходить в движение из статичной позиции с постепенным ускорением. Замедление ее движения тоже должно быть постепенным. Можно указать траекторию, по которой камера будет двигаться в сцене. При этом нужно сделать так, чтобы камера свободно поворачивалась. В результате точка наблюдения будет перемещаться, но ее вращение будет плавным и равномерным.
Движение объектов
Движение объектов
Каждый, кто работает в области трехмерной анимации, сталкивается с необходимостью создать впечатление наличия у персонажа или объекта массы и инерционности. В жизни редко происходит мгновенная остановка движения, но если такое все-таки случается, присоединенные к персонажу или объекту детали начинают раскачиваться, а то и вообще отрываются. Естественно, что при моделировании движения это не происходит само по себе, так что аниматору приходится постоянно помнить об этих и прочих деталях имитации динамики реального движения. В мультфильмах часто применяется преувеличение движения. Например, рост и объем персонажа радикально изменяются при его приближении или объект внезапно теряет вес и взмывает в воздух при ударе о землю.
Другим важным моментом является расположение центра тяжести. Например, при спуске вниз персонаж выдвигает ноги вперед в качестве противовеса. В противном случае он просто упадет. Аниматоры часто лично воспроизводят нужное движение персонажа, снимая его на пленку, чтобы иметь постоянное напоминание об этих мелких, но таких важных гранях реального движения.
Двумерная и трехмерная графика
Двумерная и трехмерная графика
Легко перепутать двумерную и трехмерную графику, потому что пользователи часто пытаются создать трехмерное изображение, используя исключительно инструменты для работы с двумерными объектами. Когда мы говорим о трехмерной графике, подразумевается виртуальное пространство с координатами X, Y и Z, в любом месте которого могут быть расположены объекты, источники света и камеры. Можно видеть оси X, Y и Z, взятые из геометрии. На них в Maya указывают вспомогательные объекты, как показано на Рисунок 1.11.
Какое направление соответствует каждой из букв? Обычно это зависит от опыта пользователя. Если аниматор работает с двумерным экраном, ось X идет слева направо, а ось Y — снизу вверх. При переходе к трехмерному экрану появляется ось Z, добавляя фактор глубины. Она может быть направлена как на зрителя, так и от него. Однако для пользователя CAD направление осей будет Основы компьютерной графики ч»
совершенно другим. Оси в CAD все время направлены вниз на координатные плоскости. Соответственно, оси X и Y являются индикаторами направлений север/юг и восток/запад, в то время как ось Z показывает высоту объекта. В Maya существует возможность менять местами оси Y и Z, что очень полезно при работе со сценами, импортированными из CAD. Это свойство может пригодиться и при импорте данных из других программ для трехмерного моделирования.
Форматы файлов изображений
Форматы файлов изображений
Обычно результатом работы в Maya является двумерное изображение. Его можно сохранить в одном из предлагаемых программой форматов. Соответственно, для выбора подходящего формата нужно представлять себе свойства каждого из них. Сохранение в некоторых форматах приводит к потере части изображения, и вы можете быть разочарованы, увидев, во что превратилась картинка, выглядевшая так безупречно после визуализации. Вот форматы файлов, доступные в Maya:
Одноразрядный (One bit). Пикселы могут принимать только два цвета — или черный, или белый.
Оттенки серого (Grayscale). Пикселы не содержат информации о цвете, отмеряется только его интенсивность. Единственным важным параметром является глубина оттенков серого. Используется до 256 оттенков (8 bit).
Палитровый (Paletted). Для создания изображения используется ограниченное число цветов, которые иногда размываются для получения наилучшего приближения к нужному изображению.
Реалистичное цветовоспроизведение (Truecolor). 24-разрядное кодирование цвета, близкое по качеству к естественной цветопередаче. Каждому из трех компонентов цвета выделено по восемь байт, при этом получается 256 оттенков каждого цвета. Этот формат соответствует 16 миллионам цветов на пиксел.
Высококачественное цветовоспроизведение (High color). Вместо 24 бит информацию о цвете представляют только 16. При этом информация о красном, зеленом и синем цветах занимает по пять бит, а последний оставшийся бит просто отбрасывается. Так как на каждый канал приходится только по пять бит, существует всего 32 уровня интенсивности. Этого слишком мало, чтобы сделать незаметными переходы от одного уровня интенсивности к другому.
Существует несколько способов сжатия изображения. Некоторые из них сопровождаются ухудшением его качества. Используя сжатие без потерь, вы умень-аете размер файла, сводя к минимуму избыточные данные. При этом изображение всегда сохраняет исходное качество.
Изображение, созданное в Maya, может быть снабжено альфа-каналом. Это дополнительный атрибут каждого пиксела, содержащий информацию о прозрачности. Например, если вы визуализировали изображение персонажа в Maya и за-м заставили его двигаться на фоне реального пейзажа, снятого на видеопленку, вручную будет очень сложно вырезать его из каждого кадра, в то время как ьфа-канал позволяет мгновенно вырезать фигуру по маске.
Рассмотрим характеристики некоторых форматов изображения, доступных в Maya:
Alias PIX. 24-разрядный формат, совместимый с более поздними версиями программы Alias.
AVI. Анимационный формат, как правило, 24-разрядный, допускающий сильное сжатие, к сожалению, обычно сопровождаемое потерей качества изображения. Не стоит использовать его для визуализации и сохранения одного кадра. Также популярны форматы анимации MPG и MOV, но они, к сожалению, не поддерживаются в Maya, так что для импорта и экспорта файлов в этих форматах вам потребуются дополнительные программы.
Cineon. 24-разрядный формат статичных изображений, часто используемый для последующего перевода на кинопленку.
EPS. Формат, обычно используемый для сохранения векторных файлов, таких как логотипы. Впрочем, он позволяет также осуществлять внедрение растровых изображений. При сохранении результата визуализации в этом формате появляется растровое изображение с расширением EPS. To есть увеличение масштаба такого изображения приводит к разбиению картинки на пикселы.
GIF. Цветное изображение, используемое в качестве графики в Интернете. Существует возможность создания анимации в этом формате, но она не поддерживается в Maya.
JPEG. 24-разрядный формат со сжатием, которое приводит к потерям качества. Альфа-канал отсутствует.
Maya IFF. 24-разрядный формат, определенный в Maya. При желании его можно снабдить альфа-каналом.
Maya 16 IFF. 16-разрядный формат, определенный в Maya. При желании его можно снабдить альфа-каналом.
Quantel YUV. 24-разрядный формат, преобразующий изображение из палитры RGB в палитру YUV. Используется в специализированных видеокодерах.
RLA. 24-разрядный формат, поддерживаемый многими программами, предназначенными для монтажа. Он может включать дополнительную информацию и используется в случаях, когда изображение, полученное в Maya, нуждается в специальном редактировании, например в размывании фоновых объектов. При желании можно добавить к изображению альфа-канал.
SGI. 24-разрядный формат, популярный на рабочих станциях Silicon Graphics. При желании можно добавить к изображению альфа-канал.
SGI16. 16-разрядный формат. При желании можно добавить к изображению альфа-канал.
Softimage pic. 24-разрядный формат, используемый в приложении Softimage, предназначенном для работы с трехмерной анимацией. При желании можно добавить к изображению альфа-канал.
Targa. 24-разрядный формат, предпочтительный для сохранения результатов визуализации. Он имеет несколько разновидностей и гарантированно работает с любой программой, которая может его прочитать. При желании можно добавить к изображению альфа-канал.
TIFF. 24-разрядный формат, допускающий сжатие без цветовых потерь. В Maya сохранение файлов TIPF происходит только в 24-разрядном и 16-разрядном форматах, хотя такие изображения могут иметь практически любой формат — окрашенный, одноразрядный и т. п. Самые новые варианты формата TIFF иногда используют алгоритм сжатия без потери качества LZH. При импорте файла в этом формате в Maya может возникнуть ситуация, когда он просто не читается. В этом случае нужно преобразовать его с помощью Photoshop или любой другой программы для редактирования изображений. При желании можно добавить к изображению альфа-канал.
TIFF16. 16-разрядный формат TIFF. При желании можно добавить к изображению альфа-канал.
Windows BMP. 24-разрядный формат, для которого отсутствует возможность сжатия. Как и в случае TIFF, имеется несколько разновидностей этого формата. Возможность добавить альфа-канал отсутствует.
Использование форматов анимации для последующего вывода результата на видео — не очень хорошая идея, потому что они часто используют сжатие с потерей качества. Лучше всего сохранять анимацию в виде набора последовательных изображений в форматах TIFF или TGA. Впоследствии эти изображения загружаются в специальное устройство, которое показывает их в виде фильма.
Яркость и контраст
Яркость и контраст
Как правило, изображение содержит всю гамму от белого до черного, но иногда специально создаются высветленные или недодержанные фотографии. В первом случае самый темный цвет на картинке становится серым, а во втором случае серым становится самый светлый. Но обычно предпочтительно, чтобы некоторые области изображения оставались полностью затемненными, а некоторые — были хорошо освещены. Для фокусирования внимания зрителя на определенных объектах можно использовать контрастность. Области изображения с низкой контрастностью (например, большая, ничем не украшенная стена серовато-желтого цвета) часто являются намного менее интересными, чем области с высокой контрастностью (например, ярко-красный автомобиль с черными шинами). Однако, .как правило, желательно избегать слишком контрастных композиций, так как в этом случае не представляется возможным сфокусировать внимание зрителя на определенной ее части, да и сама картина выглядит неестественно. В трехмерном моделировании обычной ошибкой является создание слишком блеклых, высветленных сцен. Пример такой сцены показан в центре Рисунок 1.4. Чтобы избежать таких эффектов, не вводите в сцену слишком много источников света и избегайте слишком яркой подсветки. Желательно вводить источники света по одному, фокусируя их на определенных областях, которые нужно осветить более ярко.
Камеры и перспектива
Камеры и перспектива
Правильно расположив камеру, можно подчеркнуть определенные характеристики и свойства объекта. Камера может находиться под объектом и быть нацеленной вверх или же над ним и быть нацеленной вниз. Кроме того, любая камера, виртуальная или реальная, характеризуется определенным полем зрения (field of view). В Maya употребляется термин угол обзора (angle of view). Камера может быть широкоугольной или с телеобъективом. Восприятие зрителя зависит от эффекта перспективы. Чем шире поле зрения камеры, тем шире будет перспектива. Фокусное расстояние человеческого глаза составляет 50 мм и соответствует так называемому нормальному объективу (normal lens). Изменение этого фокусного расстояния ведет к искажению перспективы, как показано на Рисунок 1.8.
Композиция изображения
Композиция изображения
Ключевой частью создания сцены является ее композиция, то есть размещение объектов и сопутствующего им окружения в пределах кадра. Также композиция создается с помощью цветов и контраста между ними. Области, окрашенные в сходные цвета или имеющие низкую контрастность, становятся менее заметными на фоне других областей изображения.
Монтаж и линия взаимодействия
Монтаж и линия взаимодействия
Обычно перед началом просмотра сцены зрителю нужно задать справочный кадр. Обычно режиссеры добиваются этого с помощью одного мастер-кадра, дающего представление о расположении объектов в сцене.
Если персонажи, участвующие в сцене, взаимодействуют друг с другом, то обычно используются два кадра — для каждого из них, — указывающие на их позиции друг относительно друга. Если в сцене есть только один персонаж, который перемещается в пространстве, уместить все его тело в кадре можно, дав общий план. Средний план демонстрирует верхнюю часть персонажа — от талии до макушки, крупный план используется для показа лица и шеи. Можно также сфокусироваться на участке от линии бровей до подбородка. Разумеется, все вышеперечисленное касается только съемки людей. К примеру, части тела и черты лица инопланетянина могут располагаться в совершенно других местах. Но, по крайней мере, у вас есть отправная точка для начала съемки.
Обслуживание системы
Обслуживание системы
Современные компьютеры, на которых запускается Maya, практически не нуждаются в техническом обслуживании со стороны пользователя. Однако для оптимального режима функционирования желательно иметь минимальный набор познаний о том, что собой представляет жесткий диск вашего компьютера. Каким бы большим он ни был, рано или поздно он заполнится. При работе в Windows лучше иметь про запас некоторое количество свободного дискового пространства — желательно не менее 100 Мбайт. Существует возможность удалить любую программу, а потом установить ее в другой раздел диска, а также удалить ненужные файлы. Имейте в виду, что при удалении файлов средствами Windows, например, с помощью приложения Windows Explorer, они перемещаются в папку Recycle Bin. Соответственно, пока вы не очистите эту папку, файлы все равно будут занимать место на диске.
Со временем в результате выполнения вышеперечисленных операций содержимое диска фрагментируется, то есть данные разбрасываются по свободному пространству. Так как в этом случае приходится тратить время на поиск начала каждого фрагмента, работа жесткого диска замедляется. Некоторые операционные системы включают в себя программы для исправления этой ситуации. Их нужно запускать раз в несколько месяцев или чаще, если вы активно работаете с файлами на диске. Программа также предоставляет информацию о том, насколько фрагментирован диск и стоит ли прибегнуть к процессу дефрагментации. Более подробную информацию по этому поводу можно найти в руководстве пользователя для вашей операционной системы.
Совет
Совет
При наличии свободного времени будет не лишним взять несколько уроков по изобразительному искусству. Многие общественные учебные заведения предоставляют возможность для таких занятий по вполне разумным ценам. Ищите классы по рисованию, истории искусства или развитию художественных способностей. Таким способом можно научиться чувствовать цвет и композицию, а также получить представление о способах решения возникающих проблем.
Операционная система
Операционная система
При работе с Maya операционная система реагирует на ввод данных, осуществляемый с помощью клавиатуры или мыши, и отображает сцену в каркасном и тонированном режимах. Так как Maya приходится работать на разных видеоадаптерах, для упрощения этого процесса используется стандарт OpenGL. Чтобы операционная система могла работать с разными видеокартами, для каждой из них существует специальное программное обеспечение, называемое драйвером. Так как качество работы карты во многих случаях напрямую зависит от драйвера, есть смысл регулярно заглядывать на web-сайт изготовителя для получения более свежих драйверов. В идеальном случае изготовитель производит тестирование совместимости своей продукции с различными операционными системами и приложением Maya.
Оси координат в Maya показаны
Рисунок 1.11. Оси координат в Maya показаны в левом нижнем углу, при этом выделенные объекты имеют свои собственные оси
Основы цвета
Основы цвета
Основы компьютерной графики
Основы компьютерной графики
Если вам уже приходилось работать с такой программой, как Photoshop, вы, скорее всего, уже знакомы с терминологией и общими методами компьютерной графики. Однако эти термины являются настолько важными для дальнейшей работы, что мы считаем своим долгом сделать их краткий обзор.
Освещение
Освещение
Большинство фотографов, кинематографистов и осветителей сцены скажут вам, что освещение само по себе является искусством. Процесс фотографии намного более чувствителен, чем работа с виртуальными камерами при создании трехмерных сцен, зато у вас есть больше возможностей, чем у фотографов. Например, можно создать источник света, от которого не возникает теней, объекты, исключенные из освещения, или свет, интенсивность которого все время остается постоянной. Тем не менее имеет смысл ознакомиться с рядом базовых принципов освещения, применяемых в традиционной фотографии.
Стандартная модель освещения
В каждой сцене свои требования к освещению, но в фотографии обычно используют стандартный подход освещения с трех точек. На Рисунок 1.7 показан пример этого подхода. Источники света расположены следующим образом:
Ключевой свет (key light). Это основной источник света в сцене. Обычно располагается на некотором расстоянии слева или справа от камеры, чтобы тени от объектов были видно более явно. В Maya источник такого света по умолчанию приводит к появлению теней.
Заполняющий свет (fill light). Это второй источник света, расположенный перед объектом. Обычно он менее яркий и располагается диаметрально противоположно от основного источника света. Вы вручную указываете будет ли этот источник света создавать тени от объектов. В общем случае в од к и той же области сцены желательно не создавать теней от более чем двух источников света, так как это сильно замедляет работу компьютера
Контровой свет (back light). Источник света, расположенный сзади используется для освещения задней части объекта и фоновых декораций. В Мауа можно настроить этот источник света так, чтобы от него не возникали блики на поверхности объектов.
Отрицательное пространство привлекает
Рисунок 1.5. Отрицательное пространство привлекает внимание к объекту сцены
Отрицательное пространство
Отрицательное пространство
Отрицательным, пространством (negative space) называют менее сложные и привлекающие внимание зрителя области изображения. Другими словами, это заполняющее картину пространство, свободное от объектов. Обычно это нейтральный вид — плоская стена, пустое небо и т. п. Однако отрицательное пространство также играет важную роль. Сплошь заполненное объектами изображение подобно ста различным радиостанциям, вещающим одновременно. Пример использования отрицательного пространства для привлечения внимания к важным объектам изображения показан на Рисунок 1.5. Композиция изображения
Палитра выбора цвета в Maya
Рисунок 1.3. Палитра выбора цвета в Maya

При выборе цветов для объектов сцены вы быстро обнаружите, что в реальности цвета редко бывают полностью насыщенными. Имейте в виду, что чистый, стопроцентно насыщенный цвет выглядит на экране компьютера слишком ярким. Чтобы придать объектам натуральный вид, избегайте предельных положений любого из ползунков Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность). Особенно это относится к насыщенности.
Подведем итоги
Подведем итоги
Процесс создания трехмерной анимации является синтезом искусства и технологии. В этой главе вы познакомились с основной терминологией, принятой в области компьютерной графики. При желании вы можете самостоятельно получить более глубокие познания по следующим темам:
Работа с вашей операционной системой. Перемещение файлов и поддержание системы в работоспособном состоянии.
Терминология, принятая в компьютерной графике. Общепринятый язык, без знания которого невозможно дальнейшее освоение темы.
Композиция в изобразительном искусстве. Умение правильно расположить объекты в пределах кадра.
Освещение и работа с камерами. Компьютерная графика является своего рода фильмом.
Форматы файлов для растровых изображений. Достоинства и недостатки каждого из форматов.
Не обязательно становиться экспертом в каждой из вышеперечисленных областей. Изучите основы и составьте представление о сопутствующих дисциплинах. В этом случае при возникновении проблемы вы будете знать, в какой области искать информацию о способах ее решения.
Предварительные сведения
Предварительные сведения
Вряд ли все интересующиеся трехмерной анимацией проводили сотни часов, снимая фильмы, рисуя картины, подбирая цвета при оформлении интерьера или фотографируя. Также сложно предположить, что каждый из этих людей собирал компьютеры, проектировал сети, устанавливал операционные системы или разрабатывал программное обеспечение. Но опыт в любом из вышеперечисленных видов деятельности может помочь в создании анимации. Компьютерная графика включает в себя такое количество разнообразных дисциплин, что практически каждый пользователь обладает хотя бы несколькими навыками, относящимися к этой области. В то же самое время для того, чтобы стать мастером в создании компьютерной графики, нужно приобрести массу умений. Начнем с обзора некоторых из них.
Конечным результатом трехмерной анимации практически всегда является двумерное изображение, статичное или ашшированное. По большей части объекты, созданные с помощью Maya, не сильно отличаются от объектов, полученных с использованием любой другой программы, предназначенной для трехмерного моделирования. Применяются классические принципы дизайна, разработанные за тысячелетнюю историю живописи и, по меньшей мере, столетнюю историю фотографии и киноискусства. Часто начинающие аниматоры имеют весьма расплывчатое представление об этих принципах, поэтому именно с их обзора мы и начнем.
Второе место среди необходимых сведений занимает знание устройства компьютера. Но в этой главе мы не будем перечислять все возможные типы компьютеров и операционных систем, а поговорим о способах выполнения различных задач с помощью компьютера. Ответы на большинство возникающих у вас вопросов можно найти, используя функцию Help (Справка) операционной системы.
Напоследок мы поговорим об основных понятиях компьютерной графики, таких как пиксел, разрешение, глубина цвета и растровое изображение. Если значение этих слов вам не известно, внимательно прочитайте соответствующий раздел данной главы.
Скорее всего, в школе на уроках рисования вам рассказывали об основных цветах — красном, желтом и синем. На цветовом круге, показанном на Рисунок 1.1, эти цвета помещены в вершины треугольника, а между ними находятся продукты их смешивания.
освещения с трех точек
Рисунок 1.7. Пример освещения с трех точек

Также в трехмерном изображении часто используются источники освещения, располагаемые позади объекта с целью добиться эффекта ореола. В общем случае такой свет имеет некий оттенок, обычно голубоватый. В Maya можно настроить этот источник таким образом, чтобы он освещал только объект, а не фоновые декорации. Цветовой контраст окрашенного ореола вокруг объекта помогает выделить его на фоне декораций. Это выделение станет особенно явным если сделать цвет ореола дополнительным к цвету фона.
ы перспективы с одной двумя и тремя точками схода
Рисунок 1.10. Примеры перспективы с одной, двумя и тремя точками схода

Иногда бывает нужно расположить камеру таким образом, чтобы создать второй вариант перспективы, имея при этом только одну точку схода. Такая ситуация возникает, например, если нежелательно, чтобы здания вверху сходились в одной точке, но в то же самое время их требуется снять снизу. Способ разрешения этой проблемы в Maya называется смещением кадра.
Работа с камерой
Работа с камерой
Теперь, когда вы знаете способы расположения камеры при съемке статичных объектов, поговорим о том, как лучше запечатлеть динамичную сцену. Объекты могут двигаться, а также менять форму и цвет, при этом камера тоже может менять свое местоположение в пространстве. Существует возможность снять несколько вариантов движения и соединить их друг с другом с помощью монтажа. Во всех этих случаях вы выступаете в роли кинорежиссера. Перечислим правила, которые необходимо знать в этом случае.
Цветовой круг (red
Рисунок 1.1. Цветовой круг (red — красный, yellow — желтый, blue — синий, violet — фиолетовый, orange — оранжевый, green — зеленый)

Производными цветами являются фиолетовый, оранжевый, зеленый. Цвета от зеленого до фиолетового называются холодными, а от красного до желтого — теплыми. Цвета, расположенные в цветовом круге друг напротив друга, называются дополнительными. Их сочетание выглядит не очень гармонично. Общая палитра цветов, используемая в композиции, называется цветовой схемой. При этом можно сказать, что цветовая схема композиции является холодной или теплой, в зависимости от доминирующего цвета. В общем, изображение получается тем более гармоничным, чем меньше дополнительных цветов было использовано для его построения. Однако их разумное применение позволяет выделить один объект на фоне другого.
Цветовой круг аддитивных цветов
Рисунок 1.2. Цветовой круг аддитивных цветов
Расположенное слева
Рисунок 1.4. Расположенное слева изображение имеет области минимальной и максимальной контрастности, в то время как центральная сцена освещена чересчур ярко, а в сцене справа — недостаток освещения

Затухание источников света также является нелишним в большинстве случаев. Если его не добавить, интенсивность света будет постоянной, вне зависимости от расстояния до его источника, что выглядит неестественно.
Освещение в компьютерной графике сильно отличается от освещения в реальном мире. Триллионы фотонов, испускаемых небольшой лампочкой, отражаются от объектов окружающей среды, распространяя свет во всех направлениях. Любая имитация реального света слишком сложна для современных компьютеров. Вместо этого используется математическая модель источника света, который не рассеивается окружающими предметами. В реальном мире свет солнца, падающий через окно, освещает всю комнату, отражаясь от пола, в то время как в компьютерной модели освещенным окажется только пол.
деления полотна
Рисунок 1.6. Пример деления полотна на части по вертикали и горизонтали
Смешивание цветов
Смешивание цветов
Известные вам основные цвета называются субтрактивными. Они не используются в компьютерной графике. Краски или пигмент карандаша накладываются на отражающую поверхность, в роли которой обычно выступает белая бумага.
Свет проходит через пигмент, отражается-от бумаги и снова проходит через пигмент. Окрашенный таким образом он достигает ваших глаз. Пигменты поглощают определенные цвета, позволяя выходить наружу только свету с определенной длиной волны. В результате, наложив друг на друга несколько пигментов различных цветов, вы получите черный цвет.
В компьютерной графике используются аддитивные цвета. Монитор по умолчанию является черным, а цвет создается путем добавления световых пятен. Основными цветами в этом случае являются красный, зеленый и синий. В результате их смешивания получаются желтый, пурпурный и голубой. Пример цветового круга аддитивных цветов показан на Рисунок 1.2. Смешивание достаточного количества различных цветов в данном случае дает в результате белый цвет.
Снизу показан результат визуализации
Рисунок 1.12. Снизу показан результат визуализации в реальном времени, в то время как сверху находится результат стандартной визуализации

Часто пользователю приходится вводить данные в программу и получать их назад. Если требуется наложить на поверхность изображение, то его нужно сначала загрузить. Каждый раз, при визуализации сцены, которую вы собираетесь использовать в дальнейшем, нужно сохранять полученный результат в файле. Можно вводить в сцену объекты реального мира, используя для этого сканирование, а также создавать реальные физические объекты на основе трехмерных объектов, смоделированных в Maya.
Точки схода и перспектива
Точки схода и перспектива
В эпоху Возрождения в поисках методов отображения перспективы художники придумали термин точки схода (vanishing points). В зависимости от ориентации камеры изображение может иметь одну, две или три таких точки. Если камера расположена в одной плоскости, то видна только одна точка схода. Поворот камеры влево или вправо приводит к появлению второй точки схода (камера на Рисунок 1.10 была повернута влево). Если же после этого камеру повернуть еще и вверх или вниз, появляется третья точка схода.
Угол обзора и перспектива
Угол обзора и перспектива
Изменив относительную высоту объекта, можно сделать его более или менее значимым. Чтобы объект выглядел мощным, сфотографируйте его снизу, глядя на него как на гигантскую статую. Для создания эффекта отстраненности объекта его нужно снять сверху и с некоторого расстояния.
С помощью перспективы создается драматический эффект и впечатление действия. Вы не обращали внимания, что блестящие автомобили и самолеты иногда фотографируют спереди, под очень широким углом и с очень близкого расстояния? Это дает очень широкую перспективу и создает впечатление, что автомобиль или самолет надвигается прямо на вас. Телеобъективы имеют очень узкое поле зрения и поэтому они уменьшают перспективу до такой степени, что объекты становятся совершенно плоскими и уже сложно сказать, какой из них расположен ближе. Отсутствие перспективы приводит к появлению схематичных сцен. Перспектива также может придать чувство масштаба. Так как в трехмерных сценах не существует ориентиров для размера, иногда бывает сложно понять, смотрите ли вы на игрушечную машинку, реальную машину нормального размера или же на гигантский автомобиль. Можно сделать массу намеков на истинные Камеры и
поверхности. Используя более широкоугольные линзы, можно легко дать представление о масштабе объекта, но желательно не переусердствовать. В общем случае поле зрения должно составлять от 25 до 80 градусов. Для крупных планов лучше использовать камеру более узким полем зрения, расположенную на некотором расстоянии, потому что, взяв для этой цели стандартную камеру с широкоугольным объективом и расположив ее близко к объекту, вы получите искажение перспективы. Пример такого искажения показан на Рисунок 1.9.
Управление файлами
Управление файлами
При работе с компьютером часто приходится просматривать содержимое жесткого диска, вырезать, а затем вставлять или копировать файлы и папки. Нужно уметь проделывать все эти операции, а также знать способы создания, редактирования и сохранения текстовых файлов. Кроме того, вы должны знать, как определить размер одного или нескольких файлов и как выделить несколько объектов, расположенных в папке последовательно или вразброс.
Ваш компьютер
Ваш компьютер
Для работы с программой Maya не требуется иметь докторскую степень в области вычислительной техники. Однако все пользователи компьютера должны иметь представление об операционной системе, с которой работают. Это помогает понять, как поддерживать компьютер в рабочем состоянии.
Векторы и пикселы
Векторы и пикселы
Существует два основных способа создания компьютерной графики — векторы и пикселы. В первом случае для каждой фиксированной точки изображения имеется линия, соединяющая ее со следующей точкой. Путем создания нескольких таких линий можно очертить замкнутую область и затем залить ее выбранным цветом. Второе название этого подхода — штриховой рисунок (line art). Так как опорные точки и линии имеют абсолютные координаты, можно создавать рисунки любого масштаба, не теряя при этом качества. Этот подход замечательно подходит для четкой графики, например для логотипов, и используется такими программами, как CorelDraw и Illustrator.
Во втором случае для создания изображения применяются прямоугольные точки, называемые пикселами. Они являются структурными единицами растрового изображения. Пикселы могут быть окрашены в любой цвет. Рассмотрение их набора с некоторого расстояния создает впечатление обычного изображения или фотографии. Чем больше пикселов, тем более детальным получается изображение, если его абсолютные размеры при печати или показе на экране монитора остаются без изменений. Абсолютный размер изображения, составленного из пикселов, называется разрешением. Если изображение состоит из большого числа пикселов, говорится, что оно имеет высокое разрешение. Например, по ширине 35-мм кадра обычно умещается 2048 пикселов, а по высоте — 1536. В отличие от векторных растровые изображения нельзя масштабировать. При сильном увеличении растрового изображения можно заметить, что оно состоит из цветных квадратиков. Подобный формат идеально подходит для фотографических изображений. Они обрабатываются с помощью таких программ, как Photoshop и Corel PhotoPaint. Штриховые рисунки очень редко используются в трехмерном моделировании, но большинство программ для работы с такими изображениями позволяет преобразовать их в растровые. При этом существует возможность выбирать требуемое разрешение.
Обычно файлы, содержащие растровые изображения, намного больше файлов со штриховыми рисунками. Например, цветное изображение с разрешением 640x480, содержит 307 200 пикселов, при этом каждый из них содержит информацию о долях красного, зеленого и синего цветов. Соответственно, размер необработанного файла составляет 921 600 байт. Это было большой проблемой во времена зарождения компьютерной графики, но благодаря техникам сжатия и возросшим мощностям компьютеров этот вопрос решен.
В Maya используется оба типа графических файлов. Может возникнуть ситуация, когда требуется создать логотип на основе штрихового рисунка, написать текст с помощью стандартных шрифтов или импортировать двумерный архитектурный план из программы для черчения, например из AutoCAD. Во всех этих случаях источником данных является векторное изображение. Также можно взять двумерные формы и использовать их в качестве кривых моделирования. Для выполнения этих преобразований вам может понадобиться инструмент, подобный Okino Polytrans, потому что возможности Maya по импорту файлов с векторными изображениями ограничены. Другой популярный у пользователей Maya инструмент для преобразования файлов с векторными изображениями в выдавленные логотипы это Zaxwork's Invigorator. Растровые изображения в Maya используются намного чаще. В основном они накладываются на поверхности способом, похожим на калькирование или наклеивание обоев. Кроме того, результаты визуализации сцен в Maya представляют собой растровые изображения.
Вид объекта при угле обзора
Рисунок 1.8. Вид объекта при угле обзора 20 градусов (слева) и 85 градусов (справа)
Вид одного и того же объекта при
Рисунок 1.9. Вид одного и того же объекта при различном расположении камер с разным полем зрения
Визуализация
Визуализация
В процессе визуализации самая большая нагрузка ложится на центральный процессор и память. Каждый визуализированный кадр сохраняется на жестком диске, а программа приступает к визуализации следующего кадра анимационной последовательности. Скорость этого процесса не зависит от того, какой видеокартой оснащен компьютер.
Знакомство с операционной системой
Если у вас нет руководства пользователя для вашей ОС в виде книги, можно получить справку по командам, используя встроенную систему помощи. Иногда руководство настолько велико, что это отбивает желание читать его целиком, однако наиболее важные части, как правило, имеют не очень большой объем, а самые важные сведения изложены в первых частях документации. Если это не так, У вас всегда есть возможность найти множество книг, в которых доступно изложено то, что вам нужно. Также полезно бывает понаблюдать, как работают ваши коллеги. Таким способом можно узнать новые приемы работы и клавиатурные комбинации.
Ввод и вывод информации
Ввод и вывод информации
В основном создание сцены в Maya начинается с нуля. После окончания работы над ней визуализируются одно или несколько статичных изображений, то есть программа рассчитывает двумерное растровое изображение сцены, наблюдаемое в объектив камеры, учитывая все источники света, объекты и материалы, назначенные этим объектам. Набор статичных изображений используется для создания анимации путем быстрого показа их одно за другим.
Хотя путем визуализации в реальном времени может быть получено изображение достаточно высокого качества, его невозможно сравнить с результатом работы визуализатора (Рисунок 1.12).
Каждое новое поколение видеокарт увеличивает скорость выполнения визуализации в реальном времени и качество итогового изображения. Но пока еще нет возможности получить хотя бы приблизительно такое же качество, как при использовании стандартного визуализатора. Создатели анимации все время увеличивают количество эффектов, добавляют мягкие тени, объемный свет, глубину резкости и прочие эффекты, негативно сказывающиеся на скорости визуализации. Качественное изображение в этом случае можно получить только путем стандартной процедуры, хотя визуализация каждого кадра может занимать несколько минут.
Продвинутая 3D графика в пакете Maya
Интерфейс Maya
Интерфейс Maya
Вид окна программы Maya после первого запуска показан на Рисунок 2.1.
Клавиша Пробел
Клавиша Пробел
Клавиша Пробел имеет две функции. Во-первых, она используется для разворота активного окна проекции на полный экран и обратно. При первом запуске Maya обычно отображается развернутое окно проекции Perspective (Перспектива). Нажатие клавиши Пробел приводит к одновременному появлению четырех окон проекции — Тор (Сверху), Side (Сбоку), Front (Спереди) и Persp (Перспектива). В результате появляется возможность развернуть на весь экран любую другую проекцию.
Удержание клавиши Пробел нажатой приводит к открытию меню оперативного доступа Hotbox, о котором мы подробно поговорим в конце этой главы.
Ключевые термины
Ключевые термины
Меню окон проекции Каждое окно
Меню окон проекции
Каждое окно проекции имеет собственное меню, как показано на Рисунок 2.7.
Меню оперативного доступа
Меню оперативного доступа
В Maya существует способ быстрого вызова основных пунктов меню, необходимых при работе с выделенным объектом. Нажмите и удерживайте клавишу Пробел. Появившееся меню будет центрировано относительно положения указателя мыши на текущий момент.
Чтобы посмотреть на полный набор меню оперативного доступа, нажмите кнопку Hotbox Controls (Элементы управления меню оперативного доступа) и затем выберите вариант Show Alt (Показать все), как показано на Рисунок 2.14.
Меню Panel
Рисунок 2.8. Меню Panel

Совет
СОВЕТ
Для изменения размеров окон проекции поместите указатель мыши на их границе м, когда он примет форму двойной стрелки или скрещенных двойных стрелок, нажмите левую кнопку мыши и перетащите границы на нужное расстояние. Для завершения преобразования отпустите кнопку мыши.
Наезд
Наезд
С помощью этой операции можно увеличить или уменьшить масштаб изображения на активной панели. Нажмите клавишу Alt, а также левую и среднюю кнопки мыши одновременно и перемещайте указатель. Используя следующие методы, вы можете изменять масштаб выделенной области:
Увеличение. Одновременно нажмите клавиши Ctrl и Alt, а также левую кнопку мыши и нарисуйте прямоугольную рамку, начав с ее левого верхнего угла и закончив правым нижним.
Уменьшение. Операция аналогична вышеописанной, но создание рамки начинается с правого нижнего угла и заканчивается левым верхним. Чем меньше площадь рамки, тем значительней будет изменение масштаба.
Примечание
ПРИМЕЧАНИЕ
Две последние из упомянутых операций применимы не только к окнам проекции, но и к любым графическим окнам диалога, появляющимся при работе с Maya, от Render View (Просмотр визуализации) до Paint Effects (Эффекты рисования). Изменение масштаба отдельных участков этих окон позволяет сфокусироваться на рабочей области и избежать излишнего напряжения глаз. Вспомните об этом, когда в подобных окнах диалога появится слишком мелкий и поэтому нечитаемый текст!
Настройка параметров
Настройка параметров
Справа от названия некоторых команд меню расположен небольшой квадратик, как показано на Рисунок 2.4.
Облет камерой
Облет камерой
В процессе облета камерой вы меняете ее положение в трехмерном пространстве относительно неподвижной мишени, сохраняя неизменным расстояние до последней. Для выполнения этой операции нажмите клавишу Alt и левую кнопку мыши и перемещайте курсор в окне проекции.
Примечание
ПРИМЕЧАНИЕ
В окнах ортографических проекций нельзя выполнить облет камерой, потому что вращение этих окон невозможно по умолчанию. К ортографическим проекциям относятся «вид сбоку», «вид сверху» и «вид спереди». Во всех этих случаях у изображения отсутствует перспектива или точки схода.
Обзор интерфейса Maya
Обзор интерфейса Maya
При первоначальном проектировании программы использовался подход, называемый графом зависимостей (dependency graph). Идея состоит в том, что все в сцене — каждая кривая, объект, ссылка, изображение, текстура, ключевой кадр и т. п., а также каждая попытка редактирования вышеперечисленного рассматривается как стандартный узел сцены. Связывая между собой эти узлы, вы создаете более сложные элементы сцены. Представим контурную линию, поворот которой вокруг заданной оси приводит к созданию вазы. При этом лежащая в основе вазы линия никуда не пропала. Операция поворота была помещена в память программы, благодаря чему можно независимо изменять как исходную кривую, так и параметры вращения.
Окно каналов (Channel Box) Используется
Трехкнопочная мышь
В процессе работы с Maya вам постоянно придется использовать все три кнопки мыши. С помощью левой кнопки можно выделить и взять любой объект, а также переместить его или повернуть. Нажатие правой кнопки мыши обычно приводит к появлению меню с командами. Средняя кнопка мыши используется для выполнения промежуточных операций, например перетаскивания материала на объект или перемещение частей объекта при включенных привязках.
Окно проекции оснащенное меню
Совет
СОВЕТ
Если меню окна проекции отсутствуют, вызовите окно диалога Preferences (Параметры) и, выбрав в расположенном слева списке вариант Interface (Интерфейс), установите флажок In Panels (В окнах проекции) в разделе Show Menubar (Показывать строку меню).
Рассмотрим подробно наиболее важные пункты этих меню:
Меню View (Вид) содержит команды Look at Selected (Фокусировка на выделенном), Frame Selected (Показ выделенного объекта) и Frame All (Показ всех объектов). Они используются для поиска объектов и фокусировки на них. Первая команда приводит к центрированию выделенного объекта в окне проекции, вторая команда не только центрирует объект, но и изменяет масштаб его изображения таким образом, чтобы разместить объект целиком в границах окна. Третья команда аналогична второй, но касается набора выделенных объектов. Вторая и третья команды выполняются также при нажатии клавиш f и а соответственно.
Примечание
ПРИМЕЧАНИЕ
Имейте в виду, что клавиатурные комбинации чувствительны к регистру. Если их применение не приводит к желаемому результату, проверьте, не нажата ли клавиша Caps Lock.
Две верхние команды меню Shading (Затенение) — Wireframe (Каркас) и Smooth Shade All (Сглаживать все) — используются для перехода между режимами каркасного отображения и тонированной раскраски по Гуро. Они выполняются также при нажатии клавиш 4 и 5 соответственно. Обратим особое внимание на режимы детализации при работе с неоднородными рациональными В-сплайнами. Нажатие клавиш 1, 2 и 3 приводит к переходу в режимы низкой, средней и высокой детализации соответственно.
В меню Lighting (Освещение) имеется команда включения отображения всех источников света в сцене. Ей соответствует нажатие клавиши 7. Имейте в виду, что результат действия этой команды заметен только в режиме тонированной раскраски объектов. По умолчанию в этом режиме сцена освещена встроенными источниками света, основным назначением которых является обеспечение минимальной видимости объектов на этапе формирования геометрии сцены.
Команды меню Show (Показать) позволяют быстро скрывать или, наоборот, делать видимыми объекты, принадлежащие к определенному типу. Например, иногда бывает полезно скрыть все камеры и источники света, чтобы получить возможность плотнее сфокусироваться на объектах сцены. Последняя команда этого меню позволяет скрыть координатную сетку, что также помогает упростить вид сцены.
Первые три команды меню Panels (Панели), показанного на Рисунок 2.8, предназначены для выбора окна проекции, в котором будет демонстрироваться трехмерная сцена. Список, появляющийся при выборе первой команды, дает возможность не только перехода к заданному по умолчанию окну проекции Perspective (Перспектива), но и создания дополнительного окна центральной проекций. Вторая команда открывает список с названиями окон ортографических проекций, при этом у вас опять же есть возможность создать дополнительное окно. Команда Look Through Selected (Вид из точки расположения выделенного объекта) позволяет увидеть сцену из точки расположения выделенного объекта. В качестве объекта может выступать как камера или источник света, так и объект-примитив. В последнем случае сцена будет показана из опорной точки выделенного объекта, с линией взгляда в отрицательном направлении оси Z. Следующие три команды предназначены для изменения компоновки и типа окон проекции. В результате выбора команды Panel (Панель) появляется меню с перечнем дополнительных типов окон проекции, таких как Graph Editor (Редактор функциональных кривых). Окна проекции, принадлежащие к любому из дополнительных типов, можно превратить в плавающие. Имейте в виду, что после этого открыть дополнительное окно проекции такого же типа физически невозможно. Ниже находится команда Layouts (Компоновка), выбор которой приводит к появлению меню с вариантами компоновки окон проекции на экране. Под ней расположена команда Saved Layouts (Заданные варианты компоновки), выбор которой открывает меню с десятью самыми популярными вариантами компоновок окон проекции. Аналогичную функцию выполняют кнопки, расположенные с левой стороны экрана под вертикальной панелью с инструментами выделения и преобразования. При желании вы можете создавать собственные варианты компоновки.
Подведем итоги
Подведем итоги
В этой главе вы начали знакомство с интерфейсом программы Maya и получили первичные навыки работы с ним. Вот краткий список тем, изученных вами в этой главе:
Управление изображением в окнах проекций. Ключевые навыки, необходимые каждый раз, когда нужно изменить угол обзора сцены.
Меню оперативного доступа. Если вы еще не сталкивались с этим элементом интерфейса, начните его исследование и убедитесь, что с его помощью легко увеличить эффективность работы в Maya.
Диапазоны анимации и ее воспроизведение. Информация, без которой нельзя обойтись при создании, редактировании и просмотре анимации. Э Терминология. Основные названия элементов интерфейса Maya, без знания которых вы не сможете понять остальные главы этой книги.
Изменение масштаба изображения объекта или набора объектов. Если вы перестали наблюдать объект или объекты в окне проекции, с помощью этих команд их изображение можно легко вернуть на место.
Компоновка окон проекции. Возможность быстро изменить интерфейс оптимальным для решения текущей задачи образом.
Это действительно основные задачи и понятия программы Maya. Прежде всего ам нужно научиться управлять изображением в окнах проекций. Несколько часов эенировки в изменении угла обзора путем перемещения мыши при нажатой кла-ише Alt позволят вам впоследствии быст ро находить желаемые проекции сцены. еперь пришла пора поговорить о способах создания и редактирования таких тементов сцены, как объекты, источники света и камеры, а также дать вам до-элнительную информацию о работе с главными меню программы.
Процесс возвращения к исходным параметрам инструмента
Рисунок 2.5. Процесс возвращения к исходным параметрам инструмента
Редактор атрибутов (Attribute
Редактор атрибутов (Attribute editor). Основной интерфейс для изменения объектов. В Maya может быть как представлен в виде плавающего окна, так и пристыкован к правой стороне экрана.
Выделение набора букв с помощью рамки Совет
Совет

Остановить воспроизведение анимации можно, нажав клавишу Esc.
Меню с дополнительными
Рисунок 2.15. Меню с дополнительными параметрами, появившееся после щелчка сверху
Примечание

В этой главе мы дали только самую общую информацию о меню оперативного доступа. Исследуйте его самостоятельно. Потренируйтесь в изменении компоновки окон проекции и редактировании пользовательского интерфейса.
Вызов окна диалога
Рисунок 2.4. Вызов окна диалога с параметрами объекта
Щелчок на этом квадратике приводит к появлению окна диалога с параметрами выбранной команды. В нем вы можете отредактировать заданные по умолчанию параметры инструмента.
Примечание

Имейте в виду, что программа помнит измененные параметры инструментов даже после перезагрузки. Именно это может быть причиной того, что результат, полученный вами в процессе выполнения упражнений в данной книге, далек от описанного. Для возвращения исходных настроек выберите в меню Edit (Правка) окна диалога с параметрами инструмента команду Reset Settings (Восстановить настройки), как показано на Рисунок 2.5.
Щелкните на двойной линии чтобы
Рисунок 2.3. Щелкните на двойной линии, чтобы превратить меню в плавающее окно, пример которого показан справа внизу
Щелкните правой кнопкой мыши на
Щелкните правой кнопкой мыши на любой точке окна проекции Тор (Вид сверху), чтобы активизировать его, не снимая при этом выделения с цилиндра. Нарисуйте выделяющую рамку вокруг букв, как показано на Рисунок 2.11.
В меню View (Вид) окна проекции Тор (Вид сверху) выберите команду Look at Selected (Фокусировка на выделенном). В результате текст окажется в центре окна. Нажмите клавишу Пробел, чтобы развернуть это окно проекции на весь экран, а затем клавишу 5 для перехода в режим тонированной раскраски. По очереди нажмите клавиши 1, 2 и 3, меняя уровень детализации NURBS-примитивов, и обратите внимание, что вид текста при этом не изменяется.
Сохранение проекций
Сохранение проекций
При работе с любым окном проекции существует возможность сохранения конкретных проекций. Это может сэкономить значительное время в ситуации, когда после настройки положения объектов приходится, к примеру, менять угол обзора для редактирования других характеристик. Для сохранения конкретной проекции выберите в меню окна проекции команду View > Bookmarks > Edit Bookmarks (Вид > Закладки > Редактирование закладок). Появится окно диалога, в котором нужно указать имя закладки и при необходимости сделать ее описание. Имена созданных закладок расположены в меню, появляющемся при выборе команды View > Bookmarks (Вид > Закладки).
Примечание
Примечание
Каждое окно проекции имеет свои собственные закладки. Соответственно, отсутствие какой-либо из созданных вами закладок может объясняться выбором неверного окна проекции.
Сопровождение камерой
Сопровождение камерой
Сопровождение позволяет перемещать камеру вместе с мишенью в разные стороны, не меняя при этом ориентации линии визирования в глобальной системе координат. Масштаб изображения также остается неизменным. Эта операция выполняется путем перемещения в окне проекции курсора при одновременно нажатых клавише Alt и средней кнопки мыши.
Строка меню Строка меню имеет
Рисунок 2.2. Раскрывающийся список с вариантами режимов. Обратите внимание на изменение строки меню по сравнению с Рисунок 2.1

Если меню имеет двойную линию в верхней части, его можно превратить в плавающую панель, как показано на Рисунок 2.3. В результате наборы часто используемых инструментов всегда будут под рукой.
Строка состояния
Строка состояния
Рассмотрим показанную на Рисунок 2.6 строку состояния, сфокусировав внимание на элементах управления, назначение которых может быть неясно начинающему пользователю.
Строка состояния
Рисунок 2.6. Строка состояния

Как уже упоминалось, слева расположен раскрывающийся список выбора режима работы. Рядом с ним находится вертикальная линия, щелчок на которой позволяет скрыть и снова сделать видимым раздел строки состояния. Тем самым можно оставить только разделы, необходимые для работы над текущей сценой. Если в центре вертикальной линии находится указывающая вправо стрелка, значит, щелчок на ней приведет к появлению скрытого раздела. Первый раздел содержит типичные ярлыки управления файлами, щелчок на которых позволит создать, открыть и сохранить сцену.
Далее снова расположен раскрывающийся список, известный под названием Selection Mask (Маска выделения), с помощью которого осуществляется выбор типа объектов, доступных для выделения. Состояние значков, расположенных справа от этого списка, зависит от выбранного варианта. Также от этого зависит состав кнопок в области Select by Type (Выделение по типу объекта). Например, в режиме создания анимации в упомянутой области оказываются нажатыми кнопки, отвечающие за выделение суставов и сочленений, так как в процессе создания ключевых кадров вряд ли потребуется выделять объекты других типов. Три кнопки, расположенные справа от раскрывающегося списка Selection Mask (Маска выделения), используются для перехода между режимами выделения иерархических цепочек, подобъектов и объектов.
Изначально программа находится в режиме выделения объектов, позволяющем выделять объекты целиком и задавать маску для выделения объектов определенного типа — линий, поверхностей, источников света и т. п.
Режим выделения подобъектов позволяет работать с составными частями объектов. Например, можно превратить сферу в капсулу, выделив верхнюю половину сферы и переместив ее вверх.
Термин иерархия (hierarchy) используется в анимации для обозначения связи между двумя объектами. Например, в результате связывания колес автомобиля с его корпусом будет достаточно анимировать корпус, движение колес возникнет автоматически. В этом случае корпус автомобиля является родительским объектом, а колеса — дочерними. В режиме выделения иерархии можно выделять только родительские или только дочерние объекты, что очень удобно для задания иерархических связей. Подробно эта тема будет обсуждаться в главе 10.
Примечание
Некоторые кнопки выделения предназначены для выделения нескольких типов объектов. Например, нажатие кнопки Select by object type:Rendering (Выделение объектов типа: визуализация) позволяет сделать выделяемыми источники света, текстуры и камеры. Щелкнув на ней правой кнопкой мыши, вы откроете список этих объектов. Выбор пункта этого списка выключает объекты из выделения. Для их обратного включения нужно просто повторить вышеописанную операцию. Если выключить из выделения хотя бы один объект, кнопка приобретает коричневый цвет.
Как уже упоминалось, состав кнопок области Select by Type (Выделение по типу объекта) зависит от выбранного режима. Нажав кнопку, помеченную значком объекта определенного типа — кривой, поверхности, источника света, камеры и т. п., — вы получаете возможность выделения объектов этого типа. К примеру, нужно выделить вазу, созданную вращением сплайна, но не исключена возможность того, что вместо вазы будет выделен сплайн. Избежать этого можно, к примеру, скрыв объекты, которые не подвергаются редактированию. Но более целесообразным в данном случае является задание маски выделения, благодаря которой выделять можно будет только поверхности. При перенасыщенности сцены объектами различных типов это свойство становится просто бесценным.
Дальше расположена кнопка блокировки выделенного набора, помеченная значком в виде замка. Выделив набор объектов, выбрав преобразование и нажав кнопку Lock Selection (Блокировка выделенного набора), можно избежать случайного выделения объекта, не входящего в первоначальный набор или, наоборот, снятия выделения с объектов набора. После нее находится переключатель Highlight Selection Mode (Режим подсветки выделенных объектов), который по умолчанию находится в позиции On (Включен). Благодаря этому происходит подсвечивание выделенных объектов. Далее расположена группа кнопок привязки, позволяющих размещать опорные точки создаваемых и редактируемых объектов сцены в точно определенных местах. Когда указатель мыши оказывается на определенном расстоянии от элемента привязки, перемещаемый им объект «притягивается» к этому элементу. В качестве элементов привязки могут выступать кривые, точки, конструкционные плоскости, сетка, а также любые комбинации перечисленных объектов. Последняя кнопка этой группы, помеченная значком подковы, используется для превращения выделенного объекта в конструкционную плоскость. В этом режиме можно, например, использовать сетку, моделирующую человеческое лицо, для создания маски Фантомаса; кривые будут автоматически привязываться к поверхности лица.
Кнопки Operations List (Список операций) используются для просмотра входных и выходных связей, а также их создания и разрыва. Следом идет переключатель Construction History (История создания), положение которого определяет, будет ли фиксироваться история преобразований объекта. Ее наличие позволяет изменять параметры ранее примененных к объекту преобразований, но одновременно увеличивает размер файла и время его загрузки. Лучше всего не отключать запись истории создания, а просто удалять ее после завершения работы над объектом.
Совет
ПРИМЕЧАНИЕ
Некоторые кнопки выделения предназначены для выделения нескольких типов объектов. Например, нажатие кнопки Select by object type:Rendering (Выделение объектов типа: визуализация) позволяет сделать выделяемыми источники света, текстуры и камеры. Щелкнув на ней правой кнопкой мыши, вы откроете список этих объектов. Выбор пункта этого списка выключает объекты из выделения. Для их обратного включения нужно просто повторить вышеописанную операцию. Если выключить из выделения хотя бы один объект, кнопка приобретает коричневый цвет.
Как уже упоминалось, состав кнопок области Select by Type (Выделение по типу объекта) зависит от выбранного режима. Нажав кнопку, помеченную значком объекта определенного типа — кривой, поверхности, источника света, камеры и т. п., — вы получаете возможность выделения объектов этого типа. К примеру, нужно выделить вазу, созданную вращением сплайна, но не исключена возможность того, что вместо вазы будет выделен сплайн. Избежать этого можно, к примеру, скрыв объекты, которые не подвергаются редактированию. Но более целесообразным в данном случае является задание маски выделения, благодаря которой выделять можно будет только поверхности. При перенасыщенности сцены объектами различных типов это свойство становится просто бесценным.
Дальше расположена кнопка блокировки выделенного набора, помеченная значком в виде замка. Выделив набор объектов, выбрав преобразование и нажав кнопку Lock Selection (Блокировка выделенного набора), можно избежать случайного выделения объекта, не входящего в первоначальный набор или, наоборот, снятия выделения с объектов набора. После нее находится переключатель Highlight Selection Mode (Режим подсветки выделенных объектов), который по умолчанию находится в позиции On (Включен). Благодаря этому происходит подсвечивание выделенных объектов. Далее расположена группа кнопок привязки, позволяющих размещать опорные точки создаваемых и редактируемых объектов сцены в точно определенных местах. Когда указатель мыши оказывается на определенном расстоянии от элемента привязки, перемещаемый им объект «притягивается» к этому элементу. В качестве элементов привязки могут выступать кривые, точки, конструкционные плоскости, сетка, а также любые комбинации перечисленных объектов. Последняя кнопка этой группы, помеченная значком подковы, используется для превращения выделенного объекта в конструкционную плоскость. В этом режиме можно, например, использовать сетку, моделирующую человеческое лицо, для создания маски Фантомаса; кривые будут автоматически привязываться к поверхности лица.
Кнопки Operations List (Список операций) используются для просмотра входных и выходных связей, а также их создания и разрыва. Следом идет переключатель Construction History (История создания), положение которого определяет, будет ли фиксироваться история преобразований объекта. Ее наличие позволяет изменять параметры ранее примененных к объекту преобразований, но одновременно увеличивает размер файла и время его загрузки. Лучше всего не отключать запись истории создания, а просто удалять ее после завершения работы над объектом.
Совет
Возможность отмены действия последней выполненной команды или опера-ции не зависит от того, запоминается ли история создания. Даже если эта функция отключена, команда Undo (Отмена) меню Edit (Правка) будет работать. Ей соответствует клавиатурная комбинация Ctrl+z. По умолчанию можно отменить последние десять операций. Изменить это значение можно в окне диалога Preferences (Параметры). Для его вызова выберите команду Window > Setting/Preferences > Preferences (Окно > Настройки/Параметры > Параметры). В списке слева выберите вариант Undo и затем введите нужное число в поле Queue Size (Размер стека). Установка переключателя Queue (Стек) в положение Infinite (Бесконечность) дает возможность применять команду Undo (Отмена) бесконечное число раз.
Примечание
ПРИМЕЧАНИЕ
Фиксация истории создания объекта подразумевает запоминание програм-мой таких вещей, как, например, число разбиений поверхности в процессе операции выдавливания. В результате появляется возможность в любой момент изменить число сегментов, из которых состоит объект.
Далее расположены кнопки Quick Render (Быстрая визуализация) и IPR (Интерактивная фотореалистичная визуализация). Щелчок на любой из них приводит к появлению окна, в котором через некоторое время возникает изображение сцены. Процесс интерактивной фотореалистичной визуализации занимает больше времени, но после его завершения редактирование источников света или материалов приводит к автоматическому обновлению результата визуализации. Размер окна с изображением сцены и другие параметры визуализации регулируются в окне диалога Render Globals (Общие параметры визуализации). Оно открывается щелчком на кнопке, расположенной в этой же группе.
Крайним справа в строке состояния расположено поле Numeric Input (Численный ввод). Работа с ним возможна в четырех режимах:
Selection by Name (Выделение по имени). Ввод нескольких символов приводит к выделению объектов, имена которых включают эти символы.
Quick Rename (Быстрое переименование). Изменение имени объекта, выделенного в текущий момент.
Absolute Entry (Ввод абсолютных значений преобразования). Ввод абсолютного значения координаты объекта после выделенного в данный момент преобразования. Например, если в процессе преобразования перемещения выделить ось Y и ввести в поле число k, выделенный объект переместится на k координату этой оси.
Relative Entry (Ввод относительных значений преобразования). Ввод величины сдвига относительно текущего положения объекта по выделенной оси координат.
Управление проекциями
Управление проекциями
В процессе создания объектов и управления ими полезно иметь возможность быстрой смены угла обзора сцены. Это можно сделать с помощью операции облета, сопровождения и наезда камерой.
Начальные навыки работы с Maya
Упражнение. Начальные навыки работы с Maya
Рассмотрим пример применения часто используемых клавиатурных комбинаций, ак как они являются основными, рекомендуем выполнить это упражнение несколько раз, чтобы запомнить эти комбинации наизусть.
Сцена содержит несколько полигональных и NURBS-примитивов.
Нажмите клавишу Пробел. Появятся четыре окна проекции. Щелкните на окне проекции Perspective (Перспектива) и снова нажмите клавишу Пробел.
Удерживая нажатой клавишу Alt, нажимайте левую и среднюю кнопку мыши, а также обе эти кнопки одновременно и перемещайте указатель мыши. Попытайтесь таким способом получить хорошее изображение тора, полученного на основе NURBS-кривых.
Выделите тор, щелкнув на нем левой кнопкой мыши. В результате на его поверхности появится зеленый светящийся каркас. Нажмите клавишу 2 и обратите внимание, как при этом изменится вид тора. Результат нажатия клавиши 3 показан на Рисунок 2.9. Для возвращения тора в первоначальное состояние нужно нажать клавишу 1. В данном случае оставьте максимальный уровень детализации.
Одновременно нажмите среднюю кнопку мыши и клавишу Alt и, перемещая указатель мыши, по очереди сфокусируйтесь на остальных NURBS-примитивах, изменяя уровень их детализации на максимальный. Как легко заметить, вид плоскости и куба не зависит от режима детализации, так как ребра этих объектов не имеют кривизны. Обратите внимание, что куб создан из шести независимых NURBS-шюскостей.
Нажмите клавишу 4 для перехода в режим каркасного отображения. Если теперь нажать клавишу а, масштаб изменится таким образом, что все объекты сцены окажутся в границах окна. Нажмите комбинацию клавиш Ctrl+Alt и нарисуйте выделяющую рамку вокруг шести крайних слева объектов. В результате выделенная область увеличится до размеров окна проекции.
Выделите цилиндр, построенный на основе полигонов, и нажмите клавишу f, чтобы увеличить объект до размеров окна проекции, как показано на Рисунок 2.10.
Выберите в меню Panels (Панели) команду Layouts (Компоновка) и затем в появившемся подменю — вариант Three Panes Split Top. if.
Поместите указатель мыши на границу между верхним и нижним окнами проекции и, когда он примет форму двойной стрелки, нажмите левую кнопку мыши и перетащите указатель вниз. Это уменьшит площадь окна проекции, расположенного снизу. Затем выберите команду Panels > Orthographic > Front (Панели > Ортографические > Вид спереди).
Возможный вид сцены после завершения упражнения
Рисунок 2.13. Возможный вид сцены после завершения упражнения

Примечание
ПРИМЕЧАНИЕ
Несколько раз повторите упражнение, выбирая различные варианты действия. Потренируйтесь в изменении масштаба области, выделенной с помощью рамки. Попробуйте другие варианты компоновки окон проекции Загрузите окна проекции различных типов, включая Hypershade (Редактор узлов) и Hypergraph (Просмотр структуры), и обратите внимание на операции масштабирования и панорамирования в этом случае.
Вызов полного набора меню
Рисунок 2.14. Вызов полного набора меню

В результате вы получите доступ к любой из команд Maya. Кроме того, есть еще пять областей, предназначенных для вызова дополнительных параметров. Их можно увидеть, щелкнув и удерживая кнопку мыши сверху, снизу, справа, слева или в центре меню оперативного доступа. Появившееся в результате щелчка сверху меню показано на Рисунок 2.15.
Продвинутая 3D графика в пакете Maya
Быстрое выделение
Быстрое выделение
После создания объектов им желательно присваивать значимые имена. Впоследствии это сильно облегчает возможность поиска нужного объекта. В Maya имеется инструмент, предназначенный для поиска объектов по имени. При этом могут использоваться групповые символы. Имя объекта вводится в поле Numeric Input (Численный ввод) в режиме Selection by Name (Выделение по имени).
Существует два групповых символа — * и ?. Первый используется для представления группы символов, а второй — для представления одного символа. Рассмотрим существующие варианты выделения для случайно именованных объектов:
1. front_tire;
2. front_tire01;
3. rear_tire;
4. rear_tire_right;
5. side_tire;
6. front_right_head_light.
Введя rear*, вы выделите объекты 3 и 4, введя *tire — объекты 1, 3 и 5. Для выделения объектов 4 и 6 нужно ввести символы *right*. Ввод сочетания *tire* приведет к выделению объектов 1,2,3, 4 и 5. Если же напечатать ?????tire, выделенными окажутся объекты 3 и 5.
Помните об этом в процессе именования объектов сцены. Правильно выбрав приставку или окончание имени, вы в будущем облегчите себе задачу выделения нужной группы объектов.
Добавление и исключение объектов
Включение/выключение выделения объектов набора. Для последовательного выделения нескольких объектов щелкайте на них кнопкой мыши, удерживая нажатой клавишу Shift. При этом повторный щелчок на выделенном объекте снимает с него выделение. Ребра каркаса последнего выделенного объекта имеют отличный от других цвет (по умолчанию зеленый). Каркасы остальных выделенных объектов имеют белый цвет.
Дополнительные параметры дублирования
Дополнительные параметры дублирования
В окне диалога, показанном на Рисунок 3.7, легко заметить наличие переключателя, изменяющего тип дубликата, а также двух флажков, назначение которых будет объяснено ниже.
Дублирование объектов
Дублирование объектов
Часто возникает ситуация, когда приходится создавать новые объекты на основе уже существующих или же создавать сложный объект многократным копированием более простых. В Maya этот процесс осуществляется с помощью команды Duplicate (Дублировать) меню Edit (Правка). Этой команде соответствует клавиатурная комбинация Ctrl+d. По умолчанию дубликат располагается поверх исходного объекта, поэтому обычно дублирование сопровождается каким-нибудь преобразованием.
Если перемещение совершается в
Рисунок 3.6. Если перемещение совершается в локальной системе координат объекта, движение вдоль оси Z объектов с различной ориентацией будет происходить в разных направлениях
Группы
Группы
Любой набор объектов после выделения может быть объединен в группу с помощью команды Group (Группировать) меню Edit (Правка). Это приводит к созданию нового узла, связанного со всеми членами группы. При этом преобразование узла приводит к преобразованию членов группы. Имейте в виду, что сами объекты при этом ничем не ограничены и у вас сохраняется возможность выделять их независимо друг от друга.
На первый взгляд, это не упрощает структуру сцены, но зато группой очень легко управлять. Узел главенствует над ее членами и с помощью клавиш со стрелками можно переходить вверх и вниз по выделенным объектам. Благодаря этому для выделения всей группы достаточно выделить любой ее объект и нажать клавишу
^. То есть члены группы являются дочерними по отношению к узлу, который является невизуализируемым объектом.
Связь между родительскими и дочерними объектами в иерархии осуществляется следующим образом: перемещение первого обязательно приводит к перемещению второго. Обратное неверно. Соответственно, анимация или преобразования родительского объекта вызывают движение дочерних, но дочерний объект может быть преобразован или анимирован независимо.
Обычно при создании объектов в Maya происходит связывание узла формы с узлом преобразований. Узел формы определяет геометрию объекта, а узел преобразований — его преобразования. При создании группы появляется узел, являющийся пустым преобразованием, который не визуализируется, так как не связан с узлом формы. Однако его можно сделать родительским или дочерним по отношению к другим объектам сцены, что часто бывает полезно при формировании или анимации сцены.
Иерархия
Иерархия
Иногда группы объектов в сцене связаны друг с другом, не являясь единым целым. Например, это могут быть колеса автомобиля, жестко связанные с его корпусом, но в то же самое время имеющие возможность вращаться независимо. В этом случае можно говорить об иерархической связи между объектами.
Именованные выделенные наборы
Именованные выделенные наборы
При необходимости часто использовать один и тот же набор объектов имеет смысл присвоить ему имя. Выберите команду Create > Set > Quick Select Set (Создать > Набор > Именованный выделенный набор). Появится окно диалога, в которое, как показано на Рисунок 3.3, вводится имя выделенного набора.
было показано, как перейти
Вид объектов в окнах проекции
В главе 2 было показано, как перейти от режима каркасного отображения к режиму тонированной раскраски и как изменить уровень детализации NURBS-объек-тов. Теперь пришло время поговорить о других способах изменения вида объекта, позволяющих яснее увидеть его форму или ускоряющих работу со сценой.
При выборе команды Shade Options (Параметры затенения) меню Shading (Затенение) любого окна проекции появится дополнительное меню с командами: Wireframe on Shaded (Каркас на затененном) и X-Ray (Рентген). Первая позволяет лучше видеть кривизну объекта и результаты редактирования его формы. Выбор второй команды доступен только в режиме тонированной раскраски. В результате объект становится полупрозрачным и вы получаете возможность наблюдать все объекты сцены, не переходя в окна ортографических проекций.
Ниже в меню Shading (Затенение) находится команда Interactive Shading (Интерактивная раскраска), выбор которой открывает меню выбора различных режимов обновления экрана при перемещении элементов сцены. По умолчанию выбран вариант Normal (Обычный). Но иногда вид сцены оказывается настолько детализированным, что компьютер не успевает рассчитывать вид сцены по мере изменения положения какого-либо из ее объектов. В этом случае процесс перемещения постоянно останавливается, чтобы дать время на обновление изображения сцены. Для ускорения этого процесса нужно выбрать один из трех других режимов — Wireframe (Каркас), Bounding Box (Габаритный контейнер) или Points (Вершины). В результате при выполнении преобразования или перехода к другой проекции все объекты сцены предстанут в виде каркасов, габаритных контейнеров или наборов вершин, благодаря чему станет возможным оперативное обновление сцены. После завершения движения объекты снова примут свой обычный вид.
Альтернативным способом повышения степени интерактивности является команда Fast Interaction (Быстрое взаимодействие) меню Display (Отображение). После ее выполнения в режиме тонированной раскраски при определенных условиях происходит упрощение объектов и текстур, благодаря которому обновление сцены происходит намного быстрее. Эта команда очень популярна, так как позволяет сэкономить значительное время, не слишком изменяя вид объектов в процессе их перемещения.
Упражнение. Создание, выделение, преобразование и дублирование объектов
Теперь пришла пора применить знания, полученные в этой главе, на практике. Посмотрим на пример создания такого несложного объекта, как дверь.
Начнем работу с пустой сцены. Убедитесь, что кнопка Construction History (История конструирования) в строке состояния нажата. Выберите команду NURBS Primitives (NURBS-примитивы) меню Create (Создание) и затем в появившемся списке выберите вариант Cube (Куб). В результате в начале координат появится куб, который послужит основой для двери.
В верхней части окна каналов показано, что на данный момент объект имеет системное имя nurbsCubel. Выделите его щелчком и введите более значимое имя — door.
Нажмите клавишу 5 для перехода в режим тонированной раскраски.
Нажмите клавишу r, чтобы активизировать инструмент Scale (Масштабировать), и увеличьте размер куба воль оси Y до 16 единиц. Чтобы сделать это вручную, выделите ось Y и перетаскивайте указатель мыши вверх, следя за тем, как цифра появляется в поле Scale Y (Масштабирование по оси Y) окна каналов. Для ускорения процесса можно ввести нужную величину непосредственно в это поле.
ПРИМЕЧАНИЕ NURBS-примитив Cube (Куб) является группой из шести плоскостей, поэтому - его выделение является двухступенчатым процессом. Для начала нужно выделить одну из граней, а затем нажать клавишу t, чтобы выделить узел группы. В результате все шесть граней автоматически окажутся выделенными.
Выделите имя переменной Scale X (Масштабирование по оси X) в окне каналов и, нажав среднюю кнопку мыши, перемещайте указатель в окне проекции, чтобы посмотреть, как работает виртуальный ползунок. Сделайте величину данного параметра равной 8.
Введите в поля Translate X (Смещение по оси X) и Translate Y (Смещение по оси Y) значения 4 и 8 соответственно. В результате левый нижний угол двери окажется в начале координат, как показано на Рисунок 3.10.
Рисунок 3.10. Дверь в исходном положении
Выберите команду Polygon Primitives (Полигональные примитивы) меню Create (Создание) и затем выберите в появившемся списке вариант Cylinder (Цилиндр). В окне каналов выделите системное имя цилиндра pCylinderl и введите поверх него новое имя knocker_stub. Затем щелкните на имени polyCylinderl, расположенном в разделе Inputs (Входные данные) окна каналов, чтобы получить доступ к списку параметров, определяющих вид цилиндра. Введите в поля Radius (Радиус) и Height (Высота) значения 0,25 и 0,5 соответственно. Вид объектов в окнах проекции У!)
Теперь нужно переместить ось дверного кольца по горизонтали, чтобы она оказалась в центре двери, и затем поднять ее вверх на 3/4 высоты двери. Кроме того, нужно слегка вдавить ось в дверь. Для выполнения указанных перемещений введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) значения 4, 12 и 0,75 соответственно. Напоследок поверните цилиндр на 90 градусов, введя в поле Rotate X (Поворот относительно оси X) значение 90.
Выберите команду NURBS Primitives (NURBS-примитивы) меню Create (Создание) и затем в появившемся списке выберите вариант Torus (Top). Присвойте этому объекту имя knocker. Затем щелкните на имени makeNurbTorusl, расположенном в разделе Inputs (Входные данные) окна каналов, и сделайте параметр Height Ratio (Отношение высоты к радиусу) равным 0,1. Переместите дверное кольцо на нужное место, введя в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) значения 4, 11 и 1,5 соответственно. В поле Rotate X (Поворот относительно оси X) введите значение 90. Нажмите клавишу Пробел, чтобы посмотреть, как сцена выглядит в остальных окнах проекции. На Рисунок 3.11 показано, какое именно расположение объектов друг относительного друга вы должны получить.
Рисунок 3.11. Дверь со всеми необходимыми деталями
Теперь пришло время отредактировать положение опорных точек объектов сцены. Начнем с дверного кольца, которое на данный момент должно быть выделено. Нажмите клавишу w, чтобы активизировать инструмент Move (Переместить), и затем перейдите в режим редактирования опорных точек, нажав клавишу Insert. Перейдите в окно проекции Front (Вид спереди) и увеличьте масштаб изображения дверного кольца. Переместите его опорную точку вверх таким образом, чтобы она оказалась в центре цилиндра. Выйдите из режима редактирования опорных точек.
Убедитесь, что дверное кольцо по-прежнему выделено, и нажмите клавишу е, чтобы активизировать инструмент Rotate (Поворот). Выделите красное кольцо, чтобы ограничить вращение кольца осью X. Теперь можно стучать им в дверь. Немного поверните его на себя, чтобы придать сцене более натуральный вид.
Теперь выделите объект door. Для этого нужно выделить любую грань этого объекта и нажать клавишу Т. Как несложно заметить, центр управляющих векторов преобразования вращения в данный момент совпадает с центром двери. Так как нам не требуется, чтобы дверь вращалась вокруг своего геометрического центра, опорную точку нужно переместить на ее левый край. Снова перейдите в режим редактирования опорной точки. Обратите внимание, что при этом автоматически окажется активизированным инструмент Move (Переместить).
Поместим опорную точку двери точно в ее нижний угол, используя привязку к кривой. Перейдите в окно проекции Perspective (Перспектива) и поменяйте угол зрения таким образом, чтобы дверь была видна спереди и слева. Нажмите и удерживайте клавишу с, затем щелкните средней кнопкой мыши по верхнему переднему ребру двери и, не отпуская ее среднюю кнопку, перетащите мышь влево. В результате положение опорной точки будет ограничено передней кромкой двери и слегка смещена влево. Выйдите из режима редактирования опорной точки.
Проверьте, как теперь поворачивается дверь, выделив зеленое кольцо (тем самым ограничив вращение осью Y) и перетаскивая указатель мыши. При этом дверное кольцо и его ось не будут участвовать в перемещении, как показано на Рисунок 3.12. Нужно сделать их объектами-потомками по отношению к двери. Нажмите клавишу z, чтобы вернуть дверь в исходное положение.
Нажмите клавишу q для перехода в режим выделения объектов, затем выделите дверное кольцо и его ось. В результате ось должна иметь зеленый цвет, а дверное кольцо — белый. Выберите команду Parent (Сделать родителем) меню Edit (Правка) или нажмите клавишу р. Теперь выделение оси автоматически приводит к выделению дверного кольца. То же самое верно для преобразований.
Выделите ось дверного кольца и затем удерживая клавишу Shift, щелкните на передней плоскости двери. Теперь создайте иерархическую связь между выделенными объектами, нажав клавишу р. Если теперь выделить любую плоскость двери, нажать клавишу t и активизировать инструмент Rotate (Поворот) и повернуть дверь относительно оси Y, вы увидите, что теперь система поворачивается, как единое целое. Кроме того, вращение дверного кольца по-прежнему выполняется корректно, независимо от того, на какой угол повернута дверь.
Выберите команду Outliner (Структура) меню Window (Окно), чтобы открыть одноименное окно диалога. Щелкните на квадратике со знаком «плюс», расположенном справа от имени door. Появится список имен шести плоскостей, причем слева от одного из них также находится квадратик со знаком «плюс», указывающий, что эта плоскость является объектом-предком для объекта knocker_stub. Раскройте все ветзи дерева иерархии, и вы увидите, что дверное кольцо находится на четвертом уровне иерархии: door, leftNurbsCubel, knocker_ stub и только потом knocker. Вид дерева иерархии в окне диалога Outliner (Структура) показан на Рисунок 3.13.
Рисунок 3.12. Поворот двери вокруг новой опорной точки не сопровождается поворотом оси и дверного кольца
Теперь вы можете самостоятельно исследовать сцену и посмотреть, как связывание объектов влияет на остальные преобразования.
СОВЕТ
Исследуйте все режимы показа объектов в Maya, чтобы получить представление о преимуществах каждого из них. Проверьте, как изменяется вид объектов в различных режимах обновления экрана при преобразованиях. Внимательно ознакомьтесь со всеми возможностями дублирования объектов.
Рисунок 3.13. В окне диалога Outliner полностью показана созданная иерархия
|
История создания дубликатов
История создания дубликатов
На Рисунок 3.1 показано, каким образом объект сохраняет историю своего создания, благодаря чему позднее появляется возможность редактировать параметры создания объекта. Для дубликатов ситуация немного отличается. Они снабжаются историей создания, только если установить флажок Duplicate Upstream Graph (Дублировать историю создания).
Маска выделения
Маска выделения
При переходе в режим выделения объектов в строке состояния появляются кнопки типов объектов, которые могут быть выделены в окнах проекции. Щелчок правой кнопкой мыши на любой из этих кнопок приводит к появлению списка подвидов объектов, подлежащих выделению. Например, если требуется избежать выделения источников света, щелкните правой кнопкой мыши на кнопке Select by Object Type:Rendering и выберите в появившемся списке вариант Lights (Источники света), как показано на Рисунок 3.4.
Масштабирование
Масштабирование
Щелчок на определенной оси с последующим перетаскивание указателя мыши ограничивает масштабирование выделенной осью. Соответственно, выделение точки схода управляющих векторов приводит к равномерному масштабированию объекта.
Если выделен один из управляющих векторов, перетаскивание указателя при нажатой средней кнопке мыши приведет к масштабированию объекта относительно выделенной оси.
Опорная точка
Опорная точка
Обычно точка, в которой сходятся управляющие векторы (называемая также опорной точкой), расположена в геометрическом центре объекта, но в некоторых случаях это не совсем удобно. Например, при моделировании прямоугольного листа, который планируется использовать в качестве двери, желательно поместить точку, относительно которой будет осуществляться поворот этого объекта, на его кромку. Для перехода в режим редактирования опорной точки нажмите клавишу Insert. Теперь преобразования перемещения, поворота или масштабирования будут касаться только опорной точки. При этом вы будете видеть значок опорной точки, как показано на Рисунок 3.8.
Перемещение
Перемещение
Щелчок в точке схода управляющих векторов с последующим перемещением указателя мыши приводит к изменению положения объекта в пределах окна проекции, но если выделить при этом одну из осей, перемещение будет осуществляться вдоль этой оси. Кроме того, можно выделить любую из осей щелчком и, нажав среднюю кнопку мыши, перемещать указатель. Это также приведет к перемещению объекта вдоль выделенной оси.
Щелчок на какой-либо из осей при нажатой клавише Ctrl приводит к ограничению перемещения плоскостью, перпендикулярной этой оси. Например, если выделить таким способом ось Y и, щелкнув на точке схода управляющих векторов, перемещать указатель мыши, объект будет перемещаться в плоскости XZ. При этом в точке схода осей появится небольшая желтая плоскость, указывающая на наличие ограничений преобразования. Чтобы снять эти ограничения, щелкните на точке схода осей при нажатой клавише Ctrl.
Перемещение указателя при нажатой средней кнопке мыши приводит к перемещению центральной точки объекта в соответствии с текущими настройками. При этом ртпадает необходимость выделения самого объекта или точки схода управляющих векторов. Например, если вы только что переместили объект вдоль оси X и не сняли с нее выделение, нажатие средней кнопки мыши и перемещение ее указателя приведут к перемещению объекта вдоль этой же оси.
Одновременное нажатие клавиши Shift и средней кнопки мыши с последующим перетаскиванием указателя приводит к перемещению объекта вдоль оси, направление которой ближе к направлению перетаскивания. Это наиболее эффективный способ перемещения объекта вдоль одной из координатных осей, так как он не требует предварительного выделения объекта или его управляющих векторов.
Подведем итоги
Подведем итоги
В этой главе вы получили информацию о способах создания и редактирования объектов в Maya. Были продемонстрированы следующие приемы:
Создание примитивов и остальных объектов. Используйте эти объекты в качестве кирпичиков для построения сцен.
Выделение объектов. Теперь вы знакомы с различными способами выделения объекта или объектов, с которыми вы собираетесь работать.
Преобразование объектов. Используйте окно каналов или управляющие векторы для изменения положения, ориентации и масштаба объектов.
Дублирование элементов сцены. Возможность копирования объектов помогает сократить время работы над сценой.
Редактирование положения опорной точки. Можно заставить объект вращаться вокруг любой точки пространства, поместив туда его опорную точку.
Создание иерархических связей. Связывание объектов соотношением предок-потомок является подготовительным действием для создания анимации.
Теперь, когда вы познакомились с интерфейсом Maya и основными методами работы с этой программой, пришло время рассмотреть их в действии. В следующей главе вы найдете пример пошагового создания анимации. Выполнить упражнение будет намного проще, если вы детально знакомы с инструментами, описываемыми в этой и предыдущей главах.
Если понимание материала в следующей главе потребует от вас слишком больших усилий, рекомендуем вам еще раз внимательно перечитать текущую главу.
Поворот
Поворот
Выделение внешнего голубого кольца с последующим перемещением указателя мыши приводит к повороту объекта в плоскости экрана, в то время как щелчок на точке схода управляющих векторов вызывает свободное вращение.
Щелчок на любом из внешних колец ограничивает поворот объекта одной из координатных осей. Если выделено одно из колец, вращение объекта можно осуществить перемещением указателя при нажатой средней кнопке мыши.
Преобразование набора объектов
Преобразование набора объектов
Имеется возможность преобразования набора выделенных объектов. Перед выполнением преобразований Move (Переместить) и Rotate (Повернуть) необходимо вызвать окно диалога Tool Settings (Параметры инструмента) и указать, в какой системе координат должно произойти преобразование. К примеру, если выделить несколько объектов, повернутых друг относительно друга, установить переключатель Move (Перемещение) в положение Object (Объект) и переместить объекты вдоль оси Z, то окажется, что объекты двигаются в разных направлениях, как показано на Рисунок 3.6. Установка переключателя в положение World (Глобальная) приведет к тому, что набор объектов будет перемещаться как единое целое.
Преобразование объектов
Преобразование объектов
Преобразованиями называются простейшие операции над объектами, связанные с их перемещением, а также изменением ориентации или масштаба. Каждая из упомянутых операций может совершаться вдоль осей X, Y и Z, соответственно преобразование возможно по девяти переменным. После создания объекта появляется возможность ввода числовых данных для его преобразования в окне каналов.
Проще всего преобразования перемещения, поворота и масштабирования выполняются с помощью мыши. Для этого нужно щелкнуть на одной из трех кнопок расположенной слева панели инструментов: Move (Переместить), Rotate (Повернуть) или Scale (Масштабировать). Кроме того, активизировать эти инструменты можно с помощью клавиш w, e и г соответственно. В результате появляются управляющие векторы, позволяющие изменять положение, ориентацию или масштаб объекта относительно одной из осей. При этом ось, относительно которой выполняется преобразование, окрашивается в желтый цвет. Перемещение точки, в которой сходятся управляющие векторы, приводит к тому, что преобразование осуществ- Преобразование ооъектов
ляется относительно трех осей одновременно. Управляющие векторы параллельны координатным осям и при этом окрашены в разные цвета. Запомните формулу XYZ= RGB. Она показывает, каким цветом окрашен управляющий вектор, параллельный определенной оси.
Совет
СОВЕТ
Изменить размер управляющих векторов можно с помощью клавиш + и -. Более точная настройка осуществляется в окне диалога Preferences (Параметры). Выберите в списке слева вариант Manipulators (Управляющие векторы), как показано на Рисунок 3.5. В результате вы получите доступ к редактированию длины управляющих векторов, величины маркеров на их концах и прочих параметров.
создания именованного выделенного набора
Рисунок 3.3. Пример создания именованного выделенного набора

При этом нужно придерживаться правил именования объектов, принятых в Maya, а именно: избегать пробелов, не начинать имена с цифр, а также использовать только буквы, цифры и знак подчеркивания. Для использования именованных выделенных наборов выберите команду Quick Select Sets (Именованные выделенные наборы) меню Edit (Правка) и выберите в появившемся списке нужный набор. Удалить или переименовать выделенный набор можно в окне Outliner (Структура), о котором мы поговорим в одном из следующих разделов.
Приращение параметров при вращении
Приращение параметров при вращении
Двойной щелчок на кнопках инструментов перемещения, поворота и масштабирования вызывает окно диалога Tool Settings (Параметры инструмента), содержимое которого зависит от выбранного инструмента. Установив флажок Snapping (Привязки) в окне инструмента Rotate (Поворот), вы получаете возможность задания фиксированной величины приращения параметров при вращении. По умолчанию эта величина равна 15 градусам, что позволяет легко повернуть объект на 30, 45, 60 и 90 градусов. Имейте в виду, что данный механизм включается только при использовании управляющих векторов.
Разница между созданием иерархической
Разница между созданием иерархической структуры и группировкой
Создание иерархической структуры приводит к возникновению индивидуального соотношения предок-потомок между объектами сцены, в то время как группа представляет собой особый вид автоматически создаваемой иерархии. Опорная точка группы размещается в геометрическом центре набора объектов, хотя ее можно и переместить. Каждый из членов группы является дочерним по отношению к ее узлу. Подводя итоги, можно сказать, что создание иерархической структуры является общей концепцией, в то время как в процессе группировки все объекты становятся потомками, имеющими общего родителя, который не визуализируется.
В окне диалога Outliner (Структура) справа от имен групп находится квадратик со знаком «плюс». Щелчок на этом квадратике открывает список членов группы. При наличии многоуровневой иерархии можно легко просматривать ее структуру, как показано на Рисунок 3.9. Выделение объекта-потомка автоматически вызывает выделение объекта-предка, но выделен он другим цветом (по умолчанию бледно-зеленым).
Настройка параметров
Рисунок З.5. Настройка параметров управляющих векторов в окне диалога Preferences
В окне диалога Outliner
Рисунок З.9. В окне диалога Outliner показывается иерархическая структура
Щелчок правой кнопки мыши на любой
Рисунок 3.4. Щелчок правой кнопки мыши на любой из кнопок маски выделения приводит к появлению списка подвидов объектов
Снятие выделения с одного из объектов
Выделение с помощью рамки
Проще всего выделить несколько объектов сцены, щелкнув в окне проекции и перетащив указатель мыши по диагонали, рисуя выделяющую рамку. Когда вы отпустите кнопку мыши, любой объект, хотя бы частично попавший в эту рамку, окажется выделенным.
Создание иерархической структуры
Создание иерархической структуры
Для непосредственного создания иерархической структуры объектов необходимо выделить объект-потомок, затем, удерживая нажатой клавишу Shift, выделить объект-предок и выбрать команду Parent (Сделать родителем) меню Edit (Правка) или нажать клавишу р. Теперь любые преобразования родительского объекта затронут дочерний. Имейте в виду, что преобразование всех объектов-потомков осуществляются относительно опорной точки объекта-предка. Это имеет смысл, так как дочерний объект связан с родительским, если, конечно, по замыслу аниматора он не должен двигаться отдельно. В приведенном выше примере с машиной колеса автомобиля являются дочерними объектами по отношению к его корпусу. Анимировав колеса, вы заставите их совершать вращательное движение, но при этом они будут следовать за корпусом автомобиля по мере его перемещения.
Для разрыва связи предок-потомок нужно выделить один или несколько дочерних объектов и выбрать команду Unparent (Разорвать связь) меню Edit (Правка) или нажать комбинацию клавиш Shift+P.
Создание источников света
Создание источников света
Создание источников света не имеет ничего общего с созданием реальной геометрической формы. В окнах проекции появляется невизуализируемый значок, указывающий точку, из которой будет исходить свет.
Можно создать источник света одного из пяти возможных типов: Directional (Направленный), Spot (Прожектор), Area (Прямоугольный), Point (Точечный) и Ambient (Рассеянный). Размер значка источника света любого из первых трех типов можно увеличить. В то время как у направленного источника света и прожектора эта операция используется исключительно для упрощения процесса выделения значка, в случае с источником света типа Area (Прямоугольный) это приведет также к увеличению освещенности. Значки источников света последних двух типов сохраняют свой размер независимо от их местоположения в окне проекции. Более подробную информацию об источниках света можно найти в главе 9.
Создание экземпляров
Создание экземпляров
В отличие от копий экземпляры являются всего лишь ссылкой, указывающей, что в определенной точке сцены нужно изобразить дубликат объекта с заданной ориентацией и масштабом. Изменения, вносимые в оригинал объекта, распро- Опорная точка 89
страняются на все экземпляры, в то же самое время возможно независимое преобразование каждого из экземпляров и назначение им уникальных материалов. Благодаря этим свойствам можно сэкономить значительное количество времени, если после создания набора одинаковых объектов возникает необходимость изменения их конструкции.
Создание элементов Изучите способы
h2>Выделение элементов. В Maya имеется несколько способов выделения объектов различного типа, с которыми вы должны быть знакомы.
Преобразование элементов. Maya предлагает усовершенствованный подход к операциям перемещения, поворота и масштабирования объектов.
Дублирование элементов. Простой способ ускорить процесс создания набора однотипных объектов.
Изменение положения опорной точки. Преобразования поворота и масштабирования выполняются относительно опорной точки объекта. Соответственно, меняя ее положение, можно изменять вид объекта, получаемого в результате преобразования.
Иерархия. Элементы сцены можно связать между собой, сформировав иерархические цепочки. В результате преобразование одного объекта автоматически будет вызывать преобразование другого.
Способы показа объектов в окнах проекции. Существуют различные способы показа объектов в окнах проекции, предназначенные как для увеличения детализации объектов, так и для ускорения процесса обновления сцены.
Ключевые термины
Иерархия (Hierarchy). Связь между объектами сцены, в результате которой преобразование одного объекта автоматически вызывает преобразование другого.
Преобразования (Transform). Простейшие операции над объектами, связанные с их перемещением, поворотом или масштабированием.
Элемент сцены (Scene element). В этой книге данный термин относится ко всем объектам, которые можно создать в трехмерном пространстве — примитивам, источникам света, камерам и т п.
Предок (Parent). Старший элемент иерархического соотношения между двумя элементами сцены.
Потомок (Child). Подчиненный элемент иерархического соотношения между двумя элементами сцены.
Опорная точка (Pivot point). Центр преобразований поворота и масштабирования. Именно эта точка определяет координаты положения объекта в трехмерном пространстве.
Группировка (Group). Возможность создать узел сцены, представляющий собой набор элементов и являющийся по отношению к ним предком.
Экземпляр (Instance). Дубликат объекта, имеющий одностороннюю связь с оригиналом. Если в оригинал объекта вносятся изменения, они распространяются на все образцы, но при этом каждый образец может быть преобразован независимо от остальных объектов.
Привязка (Snap). Средство, заставляющее указатель мыши «притягиваться» к определенным местам. Привязки также позволяют задавать фиксированные величины приращений параметров при вращении объектов.
Создание камер
Создание камер
Камеры бывают трех типов:
Camera (Камера);
Camera and Aim (Камера и мишень);
Camera, Aim and Up (Камера, мишень и вертикаль).
При создании камеры в начале координат появляется значок, напоминающий кинокамеру. Он не визуализируется, так же как и значок источника света. Чтобы облегчить процесс выделения камеры в окне проекции, ее значок можно увеличить. Подробная информация о камерах содержится в главе 11.
Создание массивов
Создание массивов
Для создания нескольких дубликатов одновременно щелкните на квадратике, расположенном справа от команды Duplicate (Дублировать) меню Edit (Правка), чтобы получить доступ к параметрам данной операции. Можно создавать копии, расположенные на равном расстоянии друг от друга, как показано на Рисунок 3.7.
Создание объектов
Создание объектов
В Maya объекты по умолчанию создаются в начале координат, после чего их можно переместить в любое место пространства. Список всех базовых визуализируемых элементов расположен в меню Create (Создание). К таким элементам относятся неоднородные рациональные В-сплайны (NURBS), полигоны, источники света, камеры, кривые и текст. Справа от названия многих из этих элементов располагается небольшой квадратик, щелчок на котором открывает окно диалога с параметрами объекта, в котором можно изменить тип объекта, заданный по умолчанию. Существует также ряд элементов сцены, таких как сочленения, деформаторы и решетки, которые не визуализируются, но помогают при моделировании и анимации. Кроме того, существуют визуализируемые элементы, названия которых не входят в меню Create (Создание). К ним относятся системы частиц и эффекты рисования.
Создание примитивов
Создание примитивов
Выбор в меню Create (Создание) вариантов NURBS Primitives (NURBS-примитивы) или Polygon Primitives (Полигональные примитивы) приводит к появлению списка, включающего такие объекты, как Sphere (Сфера), Cube (Куб), Cylinder (Цилиндр), Cone (Конус), Plane (Плоскость) и Torus (Top). Сами по себе они не представляют интереса, но очень легко поддаются редактированию. Имея опыт, можно «вылепить» из сферы кусок скалы, голову человека или чашу. Но обычно модели создаются на основе кривых — бесконечно тонких, невизуализируемых линий. Затем с помощью функций меню Surfaces (Поверхности) кривые можно превратить в объекты.
После создания любой примитив автоматически оказывается выделенным. При этом сохраняется возможность изменить его параметры в окне каналов под заголовком Inputs (Входные данные). Например, изменив у сферы параметр Sweep (Сектор) ее можно легко превратить в полусферу.
Совет
СОВЕТ
При работе с окном каналов можно использовать функцию, называемую вир-туальным ползунком. Для ее применения выделите имя переменной в окне каналов и, нажав среднюю кнопку мыши, перемещайте указатель в окне проекции. Это приведет к изменению значения выделенного параметра, как показано на Рисунок 3.1.
Удаление объектов
Удаление объектов
Для удаления объектов достаточно выделить их и нажать клавишу Del или воспользоваться командой Delete (Удалить) меню Edit (Правка). В результате любые выделенные объекты окажутся навсегда удаленными со сцены.
Удаление определенных типов объектов
Удаление определенных типов объектов
В меню Edit (Правка) находится также команда Delete All by Type (Удалить все объекты типа), выбор которой приводит к появлению списка типов объектов. Соответственно, выбрав в списке нужный пункт, вы быстро удалите все объекты данного типа.
В окне диалога Duplicate Options
Рисунок 3.7. В окне диалога Duplicate Options указано, что каждая следующая копия в 1,2 раза больше предыдущей и смещена на три единицы вдоль оси X

В Maya создаются только линейные массивы, то есть наборы объектов, распределенные вдоль прямой линии. Чтобы распределить объекты по объему, повторно вызовите окно диалога Duplicate Options (Параметры дублирования) и продублируйте уже имеющийся массив объектов относительно одной из перпендикулярных осей.
В режиме редактирования опорной точки показывается ее значок
Рисунок 3.8. В режиме редактирования опорной точки показывается ее значок

Хотя опорную точку можно перемещать вдоль ее управляющих векторов, параллельных осям глобальной системы координат, иногда бывает сложно разместить ее точно в углу или на ребре объекта. О том, как это сделать, мы поговорим в следующем разделе.
Входные связи
Входные связи
Установив флажок Duplicate Input Connections (Дублирование входных связей), вы получите примерно тот же результат, что и при создании экземпляров, когда параметры создания исходного объекта будут присутствовать у всех его дубликатов. Но в этом режиме все копии являются уникальными объектами, благодаря чему их редактирование не влияет на вид остальных копий и оригинала.
Виртуальный ползунок в действии
Рисунок 3.1. Виртуальный ползунок в действии: в результате перемещения мыши при нажатой средней кнопке значение параметра End Sweep изменяется
Временные привязки
Временные привязки
Как описано в главе 2, часто возникает необходимость точно разместить объекты друг относительно друга. Например, при редактировании положения опорной точки двери нужно поместить ее точно на кромке. В Maya это осуществляется с помощью привязок к узлам координатной сетки, ребрам или вершинам объектов. При необходимости можно временно включить нужный режим привязки. К примеру, для перехода в режим привязки к координатной сетке нажмите клавишу х, режим привязки к кривым активируется нажатием клавиши с, а для осуществления привязки к точке нужно нажать клавишу v.
Для работы с временными привязками нужно активизировать инструмент Move (Переместить) и выделить объект. Если теперь нажать и удерживать клавишу х, желтый квадратик, расположенный в центре преобразования, превратится в круг. Перемещая выделенный объект, вы увидите, как его опорная точка «привязывается» к узлам сетки. Привязки к кривым и точкам осуществляются аналогичным образом, но сначала нужно указать кривую или точку невыделенного объекта. Для этого, удерживая клавишу, активизирующую режим привязки (в данном случае это с или v), щелкните на ребре или точке целевого объекта. В результате перемещения выделенного объекта будут ограничены кривой или точкой.
Выделение объектов
Выделение объектов
Перед тем как отредактировать или удалить элемент сцены, его нужно выделить. В перенасыщенных объектами сценах не так-то просто бывает сфокусироваться на чем-то определенном. К счастью, в Maya есть ряд методов, полезных в данной ситуации.
Выделение одного объекта
Выделение одного объекта
Для выделения объекта достаточно щелкнуть на нем кнопкой мыши. В режиме каркасного отображения щелчок должен производиться на одном из видимых ребер, а в режиме тонированного отображения — в произвольном месте поверхности объекта. В последнем случае станет видимым каркас объекта. Щелчок в произвольном месте окна проекции, вне границ выделенного объекта приводит к снятию выделения.
Примечание
ПРИМЕЧАНИЕ
Невозможность выделения объектов, отличных от примитивов и кривых, может быть связана с включенным режимом редактирования подобъектов. Это можно определить по маске выделения. При этом в строке состояния будет нажата кнопка Select by Component Type (Выделение подобъектов), а расположенное слева текстовое поле будет содержать слово Components (Под-объекты), как показано на Рисунок 3.2. В результате вы сможете выделять и перемещать, например, вершины объекта, изменяя тем самым его форму. Для перехода в режим редактирования объектов нажмите клавишу F8. Ее повторное нажатие вернет вас к редактированию подобъектов.
Выделение по списку
Выделение по списку
Имеется возможность выделять объекты и снимать с них выделение с помощью списка элементов сцены. Это можно сделать в окне диалога, вызываемом командой Outliner (Структура) меню Window (Окно). Имена выделенных объектов сцены в этом окне помечены серой полоской. Можно выделить список последовательно расположенных объектов, щелкнув на первом пункте списка, нажав клавишу Shift и затем щелкнув на последнем пункте списка. Альтернативным способом в данном случае является щелчок на первом элементе списка с последующим перетаскиванием указателя мыши вниз или вверх. Если же нужно выделить несколько объектов, имена которых расположены вразброс, нажмите клавишу Ctrl и последовательно щелкните на именах всех элементов. Простой щелчок на любом из элементов списка приводит к снятию выделения с элементов, выделенных ранее. Таким способом можно выделить даже элементы, не входящие в маску выделения.
Выделение с помощью инструмента Lasso
Выделение с помощью инструмента Lasso
Бывают случаи, когда выделение объектов прямоугольной рамкой оказывается затруднительным. Если объекты сцены перекрываются или хаотично разбросаны по всей сцене, приходится рисовать область выделения более сложной формы. Для этого применяется инструмент Lasso (Лассо), кнопка выбора которого находится на панели инструментов, расположенной с левой стороны экрана. Активизировать этот инструмент можно также, нажав комбинацию клавиш Ctrl+q. Как и в случае с прямоугольной рамкой, выделенными оказываются объекты, хотя бы частично попавшие в область выделения.
Выполнение преобразований
Выполнение преобразований
В режиме выполнения преобразований имеется несколько способов работы с объектами, о которых мы поговорим ниже. В общем случае щелчок на поверхности выделенного объекта или в точке схода управляющих векторов с последующим перемещением указателя мыши приводит к свободному перемещению, повороту или равномерному масштабированию объекта. Если же щелкнуть на одном из управляющих векторов, преобразование будет ограничено выбранной осью.
Продвинутая 3D графика в пакете Maya
Дополнительная анимация сцены
Дополнительная анимация сцены
Теперь пришло время создать траекторию движения шлюпки. Нарисовав кривую на поверхности WaterPlane, вы заставите ее деформироваться вместе с этой поверхностью.
Упражнение. Моделирование перемещения шлюпки вдоль траектории
Процесс анимации шлюпки состоит из двух этапов: создание траектории движения и связывание объекта с этой траекторией.
Сделайте видимым только слой WaterL и убедитесь, что ползунок таймера анимации стоит на отметке нулевого кадра, то есть плоскость находится в недеформированном состоянии. Вызовите окно диалога Outtiner (Структура), щелкните на квадратике со знаком «плюс», расположенном слева от имени группы WaterGroup, и выделите плоскость WaterPlane. В меню оперативного доступа выберите команду Modify > Make Live (Изменить > Сделать активным). Плоскость приобретет зеленый цвет, кроме того, к ней окажутся привязаны все точки кривой, которую вы собираетесь создать.
Сделайте видимым слой GroundL и перейдите в окно проекции Тор (Вид сверху). Можно работать в режиме тонированной раскраски при видимых каркасах объектов, выбрав в меню окна проекции команду Shading > Shade Options > Wireframe on Shaded (Затенение > Параметры затенения > Каркас на затененном). Выберите в меню оперативного доступа команду Create > CV Curve Tool (Создать > Построение CV-кривой) и нарисуйте кривую на поверхности воды, например, так, как показано на Рисунок 4.14. Имейте в виду, что кривая становится видимой только после указания первых четырех точек, а потом обновляется с каждым новым щелчком. Чтобы в процессе ее рисования вернуться на шаг назад, следует воспользоваться клавишей Backspace. Когда кривая будет готова, нажмите клавишу Enter. Старайтесь, чтобы кривая пролегала на достаточном расстоянии от «островов». Не стоит особо беспокоиться об ее форме. Позже при желании можно будет ее отредактировать. Присвойте кривой имя BoatPath.
Используйте редактор слоев для
Рисунок 4.7. Используйте редактор слоев для систематизации элементов сцены
Дважды щелкните на имени нового слоя, чтобы открыть окно диалога Edit Layer (Редактирование слоя). Присвойте слою имя WaterL и измените его цвет на синий. В результате любые объекты, расположенные в этом слое, в режиме каркасного отображения будут иметь синий цвет. Напоследок снимите флажок Visible (Видимый), чтобы скрыть слой, и нажмите клавишу Save (Сохранить).
Прежде чем добавлять воду в созданный слой, нужно сгруппировать ее части. В окне диалога Outliner (Структура) выделите имена объектов WaterPtane, CopyOfWaterPlane и WaterWavesField, поочередно щелкнув на них при нажатой клавише Ctrl.
В меню оперативного доступа выберите команду Edit > Group (Правка > Сгруппировать) и присвойте вновь созданной группе имя WaterGroup. Теперь в окне диалога Outliner (Структура) вместо имен исходных компонентов фигурирует только имя группы.
Примечание
Выделение объекта WaterPlane в любом из окон проекции не приведет к выделению остальных элементов группы. Однако нажатие клавиши t после щелчка на любом из элементов группы выделит всю группу. Группировка создает узел, расположенный на более высоком уровне иерархии, вместо того чтобы просто связать объекты в единое целое.
Примечание
ПРИМЕЧАНИЕ
Выделение объекта WaterPlane в любом из окон проекции не приведет к выделению остальных элементов группы. Однако нажатие клавиши t после щелчка на любом из элементов группы выделит всю группу. Группировка создает узел, расположенный на более высоком уровне иерархии, вместо того чтобы просто связать объекты в единое целое.
Примечание
Клавиши со стрелками также можно использовать для выделения остальных объектов, связанных в группу. Например, раскройте ветвь дерева иерархии WaterGroup и выделите строчку WaterPlane. Нажимайте клавиши < и >, и вы увидите, как маркер выделения перемещается на названия других объектов, расположенных на том же уровне иерархии. Нажатие клавиши ^ приводит к выделению предка текущего выделенного объекта, а нажав клавишу v, вы выделите его потомка.
Теперь нужно поместить группу WaterGroup в слой. Выделите ее, щелкните правой кнопкой мыши на имени слоя в редакторе слоев и выберите команду Add Selected Objects (Добавить выделенные объекты). В результате плоскость WaterPlane исчезнет из виду, что даст вам возможность легко редактировать плоскость GroundPlane.
Пришло время придать форму плоскости, изображающей земную поверхность. Выделите ее и щелкните на квадратике, расположенном справа от команды Sculpt Surfaces Tool (Инструмент моделирования поверхностей) меню Edit NURBS (Правка NURBS-объектов). Для получения доступа к этому меню нужно перейти в режим Modelling (Моделирование). Появится окно диалога, показанное на Рисунок 4.8,
Примечание
ПРИМЕЧАНИЕ
Если у вас есть графический планшет производства фирм Wacom, Intuos или Graphire, имеет смысл им воспользоваться, потому что с его помощью намного проще управлять инструментом Scultp Surface (Моделирование поверхностей). Откройте окно диалога Tool Settings (Параметры инструмента) этого инструмента на вкладке Stroke (Штрихи) и установите переключатель раздела Stylus Pressure (Нажим на перо) в положение Opacity (Непрозрачность), Radius (Радиус) или Both (Оба), установив тем самым зависимость упомянутых параметров от силы давления на кисть.
Установите переключатель Operation (Операция) в положение Pull (Вытаскивать), как показано на Рисунок 4.8. Остальные параметры оставьте без изменений. Закройте окно диалога и перемещайте указатель мыши по плоскости. Вы должны увидеть красный круг, указывающий область, рельеф которой будет изменен.
Изменение положения опорной точки
Рисунок 4.15. Изменение положения опорной точки шлюпки приводит к тому, что она появляется над поверхностью воды
Изменение скорости воспроизведения
Рисунок 4.6. Изменение скорости воспроизведения анимации в окне диалога Preferences

В разделе Playback (Воспроизведение) находится раскрывающийся список Playback Speed (Скорость воспроизведения), в котором можно выбрать подходящий вариант. Нажмите кнопку Save (Сохранить) для сохранения сделанных изменений.
Совет
СОВЕТ
Если воспроизведение анимации все еще происходит слишком медленно, попробуйте воспользоваться проигрывателем. Щелкните на квадратике, расположенном справа от команды Playblast (Проигрыватель) меню Window (Окно), укажите параметры воспроизведения и нажмите кнопку Playblast (Воспроизвести). В результате кадры будут скопированы из окна проекции и показаны с помощью служебной программы FCheck (Контроль файлов) или проигрывателя, по умолчанию используемого в вашей операционной системе. Это безошибочный способ проверки скорости воспроизведения анимации.
Ключевые термины
Ключевые термины
Изопараметрические кривые (Isoparm). Кривая на NURBS-поверхности, дающая представление о ее топологии.
Вершина (Vertex). Безразмерная точка в трехмерном пространстве или на плоскости. Сегменты, соединяющие вершины, называются ребрами. Три и более ребер, соединенных в многоугольную форму, являются гранями, на основе которых строятся поверхности.
Управляющие вершины (Control vertices). Точки, определяющие форму NURBS-кривой.
Материал (Material). Набор характеристик, присваиваемых поверхности геометрической модели для придания ей сходства с поверхностью реального объекта.
Трассирование (Raytracing). Метод визуализации, позволяющий имитировать свойства материала зеркально отражать окружающие его предметы или преломлять световые лучи, проходящие сквозь материал. Также этот метод используется для получения более реалистичных теней от объектов.
Динамика (Dynamics). Имитация физических явлений. Вместо анимации объектов вручную создаются поля, действующие на объект, а затем программа вычисляет поведение объекта.
Динамика упругих тел (Soft body dynamics). Результат воздействия сил или полей на сжимаемые объекты. Например, удар такого объекта о стену вызывает не только его отскок, но и временную деформацию.
Проект (Project). Способ систематизации информации о сцене. Проект включает в себя несколько папок, содержащих файлы сцены и вспомогательные файлы, например, с созданными для объектов сцены материалами.
Начало нового проекта
Начало нового проекта
Программа Maya замечательно работает со структурой проекта. Если определить какую-нибудь папку в качестве корневой, программа затем самостоятельно создаст дочерние папки, систематизируя различные файлы, возникающие в процессе работы над сценой.
Но это не значит, что вы освобождаетесь от обязанности планировать структуру проекта. Если сесть и сразу приступить к созданию объектов, то из этого не выйдет ничего хорошего. Скорее всего, в итоге вам придется начать все с самого начала. Большинство аниматоров, работающих с компьютерной графикой, сначала делают наброски сцены на бумаге.
Вашим первым проектом станет моделирование шлюпки, плывущей по волнам океана. Вам предстоит смоделировать океан и шлюпку, назначить им подходящие материалы, анимировать шлюпку и визуализировать полученную сцену.
Настройка параметров визуализации
Рисунок 4.24. Настройка параметров визуализации в окне диалога Render GLobals
Сохраните сцену.
Щелкните на кнопке Render (Визуализация) на панели окна проекции Render View (Просмотр визуализации). Если будет визуализирована не та проекция, которая требуется, щелкните правой кнопкой мыши на любой точке этого окна и выберите в появившемся меню команду Render > Render > View (Визуализировать > Визуализировать > Проекция), где под проекцией подразумевается имя нужного вам окна проекций.
Для визуализации всей последовательности кадров выберите в меню оперативного доступа команду Render > Batch Render (Визуализация > Пакетная визуализация). Кадры будут сохранены в папке project\images. Для наблюдения за ходом визуализации откройте окно диалога Script Editor (Редактор сценариев). Это делается с помощью команды Window > General Editors > Script Editor (Окно > Редакторы общего назначения > Редактор сценариев).
Назначение материалов и освещение сцены
Назначение материалов и освещение сцены
Пришло время сделать объекты сцены более привлекательными. Материалы не только позволяют сделать поверхность цветной, но и добавляют ей такие характеристики, как зеркальные блики или прозрачность. Назначая материалы объектам сцены, можно выделить их друг относительно друга и придать им более реалистичный вид. В этом разделе вам предстоит узнать, как создаются и назначаются материалы в окне диалога Hypershade (Редактор узлов). В этом окне диалога также можно редактировать узлы, связанные с визуализацией, то есть текстуры, материалы, источники освещения, специальные эффекты и т. п. В упражнении этого раздела вы назначите материалы объектам сцены и произведете эскизную визуализацию, чтобы посмотреть, каким образом их требуется отредактировать. Работа с материалами неотделима от использования источников света, так как последние оказывают влияние на вид материалов.
Объект полученный в результате
Рисунок 4.10. Объект, полученный в результате перемещения расположенных снизу управляющих вершин конуса
Окно диалога Tool Settings для инструмента Sculpt Surface
Рисунок 4.8. Окно диалога Tool Settings для инструмента Sculpt Surface
Причиной отсутствия красного круга может оказаться невыделенная плоскость. Нажмите клавишу q, чтобы перейти в режим выделения объектов, щелкните на плоскости и затем нажмите клавишу у, чтобы активизировать последний использованный инструмент. Щелкая в различных местах плоскости и перетаскивая указатель мыши, вы увидите перемещение участка поверхности в положительном направлении оси Y. Переключитесь в режим тонированной раскраски, нажав клавишу 5, чтобы лучше видеть изменения поверхности. К сожалению, в данный момент радиус кисти слишком мал. Для изменения его размера перемещайте указатель мыши, одновременно нажав клавишу b и среднюю кнопку.
Продолжите формирование поверхности, периодически устанавливая переключатель Operation (Операция) в окне диалога Tools Settings (Параметры инструмента) в положение Push (Вдавливать). Альтернативным способом смены режима является использование меню, вызываемого перетаскиванием указателя мыши при нажатой клавише и. Переместите вверх некоторые участки плоскости таким образом, чтобы земная поверхность в нескольких местах выступала над водой. Пример поверхности, которую нужно создать, показан на Рисунок 4.9. Для получения лучшего представления о величине смещения участков плоскости GroundPlane можно сделать видимой плоскость WaterPlane. Для этого дважды щелкните на имени слоя WaterL в редакторе слоев и установите флажок Visible (Видимый) в окне диалога Edit Layer (Редактирование слоя). Альтернативным способом изменения видимости слоя является щелчок на первом из двух квадратиков, расположенных слева от его имени. В результате объекты слоя становятся видимыми, а внутри квадратика появляется буква V.
Окончание работы над сценой
Окончание работы над сценой
Работа над сценой практически закончена. Осталось только добавить дополнительные источники света и визуализировать полученный результат. Так как освещение сцены является сложной задачей, которой мы плотнее займемся в главе 9, мы подготовили для вас файл с уже настроенными источниками света.
Подведем итоги
Подведем итоги
В этой главе вы сделали первый шаг к полноценному использованию программы Maya, получив представление о многочисленных методиках и инструментах, используемых для создания сцен. Применив всего лишь один из многочисленных методов анимации, вы создали замечательную сцену. Кроме того, по ходу дела вы узнали о следующих методах и понятиях:
Начальный этап моделирования. Основу сцены составляют создаваемые вами объекты.
Работа со слоями и группами. Вы узнали, как разделить компоненты сцены на отдельные слои или сгруппировать их, чтобы сделать структуру сцены более понятной.
Упругие гибкие деформации. Вы увидели, как просто можно изменить форму простого объекта для получения различных эффектов или создания иллюзии движения.
Использование ограничителей. Мы продемонстрировали альтернативные способы создания связей между объектами, предоставляющие дополнительные возможности контроля за происходящим в сцене.
Основы анимации. Вы познакомились с простым способом заставить объекты перемещаться — с анимацией вдоль траектории.
Работа с материалами в окне диалога Hypershade. Вы узнали, как импортировать заранее созданные материалы и назначить их объектам сцены.
Использование интерактивной фотореалистичной визуализации. Процесс редактирования текстур и освещения в сцене сильно упростился с тех пор, как появилась возможность немедленного просмотра результатов этого редактирования.
Визуализация. Мы продемонстрировали настройку параметров визуализации и ее воспроизведение с помощью служебной программы FCheck (Контроль файлов).
Постоянная систематизация результатов вашего труда является хорошей привычкой, которая впоследствии облегчает работу над сценой и позволяет экономить время. Теперь пришла пора заняться детальным изучением каждой из стадий создания проекта: моделирования, назначения материалов, освещения, анимации и визуализации.
в процессе воспроизведения анимации движение
Примечание

Если в процессе воспроизведения анимации движение шлюпки оказывается рваным, то причина может быть в слишком большой плотности управляющих вершин на траектории движения.
построения CVкривой которая
Рисунок 4.14. Пример построения CV-кривой, которая будет использоваться в качестве траектории движения шлюпки
Пока что кривая не является частью водной поверхности и не станет ей, пока вы не сделаете поверхность неактивной. Снимите выделение с кривой, щелкнув в произвольном месте окна проекции, и выберите в меню оперативного доступа команду Modify I Make Not Live (Изменить? Сделать неактивным). Теперь кривая является частью плоскости, но в то же время может быть выделена независимо.
Сделайте видимым слой BoatL и выделите в окне диалога Outliner (Структура) группу BoatG. Нажмите клавишу Shift и щелчком выделите кривую BoatPath. Перейдите в режим Animation (Анимация), нажав клавишу F2. Выберите в главном меню команду Animation > Motion Paths > Attach to Motion Path (Анимация > Траектории движения > Привязать к траектории движения). Вернитесь к четырех-оконной конфигурации, сделайте активным окно проекции Perspective (Перспектива) и нажмите комбинацию клавиш Alt+v, чтобы начать воспроизведение анимации. Как легко заметить, шлюпка движется именно вдоль кривой BoatPath.
В процессе воспроизведения анимации вы, скорее всего, заметили, что пока сцена не совсем соответствует нашим ожиданиям. Прежде всего, шлюпка находится под водой, так как привязка объекта к траектории происходит в месте расположения его опорной точки. Верните ползунок таймера анимации к отметке нулевого кадра и дайте крупным планом изображение шлюпки в окне проекции Perspective (Перспектива). Активизируйте инструмент Move (Переместить), нажав клавишу w. Перейдите в режим редактирования опорной точки, нажав клавишу Insert, и измените положение этой точки таким образом, чтобы в воду осталось погруженным только самое дно шлюпки, как показано на Рисунок 4.15. Еще раз нажмите клавишу Insert для выхода из режима редактирования опорной точки.
Просмотр результатов визуализации
Просмотр результатов визуализации
В данном упражнении результатом визуализации стала последовательность статичных картинок. Теперь поговорим о том, как можно осуществить их просмотр. Пришло время познакомиться со служебной программой FCheck (Контроль файлов), которая является проигрывателем, встроенным в Maya. В программу загружается последовательность визуализированных кадров для просмотра.
После установки Maya на ваш компьютер значок программы FCheck (Контроль файлов) появился в меню Start (Пуск). Выберите команду Start > Programs > Maya > FCheck для запуска данной программы, а затем выберите в меню File (Файл) ее окна команду Open Animation (Открыть анимацию). Найдите в появившемся окне диалога файл OceanWorld001.tif и нажмите кнопку Open (Открыть), чтобы приступить к просмотру анимации.
В качестве альтернативного способа можно предложить сохранить анимацию в файле формата AVI и воспроизводить ее с помощью стандартного проигрывателя.
Результат применения инструмента
Рисунок 4.9. Результат применения инструмента Sculpt Surfaces к плоскости GroundPlane
Для выхода из режима работы с инструментом Sculpt Surfaces (Моделирование поверхностей) нажмите клавишу q. Теперь осталось создать отдельный слой для плоскости, изображающей земную поверхность. Назовите новый слой GroundL и назначьте ему коричневый цвет.
Если вы до сих пор не сохранили сцену, сделайте это сейчас.
Теперь внутренняя
Рисунок 4.13. С помощью метода опорных сечений на месте зазора между внутренней и внешней частями шлюпки формируются участки поверхности
Повторите эту операцию для другой стороны шлюпки.
Теперь осталось ликвидировать зазор в кормовой части шлюпки. Имейте в виду, что в данном случае вам придется провести эту операцию дважды — для правого и левого участков. После того как зазор будет закрыт полностью, выйдите из режима редактирования подобъектов.
Примечание
Примечание
Помните, что можно менять уровень детализации изображения, нажимая клавиши 1,2 и 3.
В данный момент щелчок на поверхности объекта приводит к выделению только одного участка, так как модель создана из двух частей. Перед группировкой их в единый объект обязательно нужно удалить историю создания. Если этого не сделать, вид элемента сцены будет зависеть от вида объектов, на основе которых он был создан. Выделите все поверхности шлюпки и выберите команду Edit > Delete by Type > History (Правка > Удалить все объекты типа > История). Затем повторно выделите все поверхности и выберите команду Group (Группировать) меню Edit (Правка). Шлюпка превратится в выделенный объект, названный Groupl. В окне каналов измените это имя на BoatG. Снимите выделение с объекта и снова попытайтесь выделить его. Вы увидите, что щелчок по-прежнему приводит к выделению только группы граней, так как поверхности шлюпки стали частью иерархической цепочки. Нажмите клавишу ^, чтобы выделить объект целиком.
Примечание
Примечание
С помощью окна диалога Outtiner (Структура) легко можно удалить лишние объекты. Поочередно выделяя элементы списка в этом окне, смотрите, какой объект оказывается выделенным в окне проекции. В некоторых случаях может потребоваться нажать клавишу f, чтобы сфокусироваться на этом объекте. Если выделение имени объекта в списке не приводит к выделению объекта в окне проекции, смело можно нажимать клавишу Delete. Но соблюдайте осторожность, чтобы не удалить жизненно важную часть сцены. В данном упражнении таковой является целевая плоскость.
Создайте слой с именем BoatL и поместите в него шлюпку. Сохраните сцену.
Изменение параметров
ПРИМЕЧАНИЕ
Обратите внимание, что после выделения упругого тела вид окна каналов изменится. Это связано с тем, что в окне каналов показываются все атрибуты
частиц, которые могут быть отредактированы. Доступ к этим свойствам можно получить также на вкладке WaterPlanePartideShape окна диалога Attribute Editor (Редактор атрибутов), вызываемого с помощью клавиатурной комбинации Ctrl+a.
Убедитесь, что вы находитесь в режиме Dynamics (Динамика). Если это не так, нажмите клавишу F4. В меню оперативного доступа выберите команду Fields > Turbulence (Поля > Турбулентность). В начале координат должен появиться небольшой кружок, указывающий, что поле было создано. В окне каналов переименуйте поле, присвоив ему имя WaterWavesField.
Примечание
Альтернативной возможностью создания поля, действующего на упругое тело, является использование окна диалога Dynamic Relationships (Динамические связи), вызываемого командой Window > Relationship Editors > Dynamic Relashionships (Окно > Редакторы связей > Динамические связи). Более подробную информацию об этом можно найти в главе 13.
Теперь попробуйте снова запустить воспроизведение анимации, чтобы посмотреть, как будет двигаться плоскость после создания поля. Если разглядеть движение не удается, увеличьте масштаб изображения. Пока что это не очень похоже на движение волн, значит, нужно изменить параметры поля Turbulence (Турбулентность). В окне диалога Outliner (Структура) выделите строчку WaterWavesField. Затем в окне каналов введите в поля Magnitude (Величина) и Attenuation (Затухание) значения 6 и 0, как показано на Рисунок 4.5.
Изменение параметров
ВНИМАНИЕ
После просмотра анимации не забудьте вернуть ползунок таймера анимации к нулевому кадру. Это можно сделать, щелкнув на крайней левой кнопке в группе кнопок воспроизведения анимации. В противном случае последующие преобразования будут применяться к деформированной поверхности, что может исказить конечный результат.
Совет
Теперь вы можете самостоятельно добавить в сцену другие поля, например Air (Атмосфера) или Vortex (Водоворот), и снова воспроизвести анимацию. Кроме того, интересный эффект может дать тонкая настройка параметров поля Turbulence (Турбулентность). Попробуйте изменить значения параметров Frequency (Частота), Attenuation (Затухание) и Magnitude (Величина).
Если воспроизведение анимации происходит слишком медленно или недостаточно плавно, попытайтесь изменить его скорость. Причиной этого может быть также недостаточная мощность вашего компьютера. Щелкните на кнопке Animation Preferences (Параметры анимации), расположенной справа от ползунка диапазона.
Появится окно диалога Preferences (Параметры), у которого в списке Categories (Категории) выбран вариант Timeline (Временная шкала), как показано на Рисунок 4.6.
З Используйте окно диалога
СОВЕТ
Если сейчас скрыть координатную сетку, плоскость будет видна более отчетливо. Это можно сделать, выбрав команду Grid (Сетка) меню Display (Отображение).
В результате преобразования NURBS-плоскости в упругое тело будет получена совокупность частиц, находящихся в тех же самых местах, где были расположены управляющие вершины, что даст вам возможность применить динамические эффекты. Для работы с упругими телами нужно перейти в режим Dynamics (Динамика). Это делается нажатием клавиши F4. В меню оперативного доступа выберите команду Soft/Rigid Bodies (Упругие/твердые тела) и щелкните на квадратике, расположенном справа от команды Create Soft Body (Создать упругое тело).
Появится окно диалога Soft Options (Параметры упругости), показанное на Рисунок 4.3. В раскрывающемся списке Creation Options (Параметры создания) выберите вариант Duplicate, Make Original Soft (Дублировать, сделать исходный объект упругим). Установите флажки Hide Non-Soft Object (Скрыть неупругий объект) и Make Non-Soft a Goal (Сделать неупругий объект целевым), а в текстовое поле Weight (Вес) введите значение 0,25. Нажмите кнопку Create (Создать). В результате появится скрытая копия плоскости WaterPlane, а исходная плоскость преобразуется в упругое тело. Частицы упругого тела будут притягиваться к скрытой плоскости, что позволит избежать слишком сильных деформаций водной поверхности. Степень притяжения частиц к целевому объекту задается при помощи параметра Weight (Вес). В отсутствие целевого объекта под действием поля начнутся бесконтрольные деформации упругого тела. Если сделать вес равным единице, частицы упругого тела немедленного окажутся притянутыми к целевому объекту, а вес, равный нулю, не оказывает никакого эффекта на их положение. Промежуточные значения веса приводят к постоянному изменению положения частиц, что идеально подходит для имитации движения волн.
З Используйте окно диалога
Рисунок 4.4. Окно диалога Outliner демонстрирует структуру и компоненты сцены
Перед тем как заставить плоскость двигаться, нужно решить, какой должна быть продолжительность анимации. По умолчанию частота ее воспроизведения равна 24 кадрам в секунду. Соответственно, 15-секундный ролик будет состоять из 360 кадров. Введите это число во второе поле, расположенное справа от ползунка диапазона. Если сейчас запустить воспроизведение анимации, то ничего не произойдет, так как частицы упругого тела пока еще не находятся под действием каких-либо сил. Привести их в действие вам предстоит в следующем упражнении.
Систематизация папок с файлами проекта
ПРИМЕЧАНИЕ
В именах объектов или проектов Maya запрещено использовать пробелы. Вы можете использовать знак подчеркивания (например, new_scene) или чередование строчных и прописных букв (например, NewScene).
Систематизация папок с файлами
Рисунок 4.1. Окно диалога New Project
Создание элементов сцены Теперь
Создание элементов сцены
Теперь, когда вы создали проект, сохраните сцену под именем ch04oceanScene. Это делается при помощи команды Save Scene (Сохранить сцену) меню File (Файл). В процессе выполнения данного упражнения вы можете сохранять сцену так часто, как считаете нужным. Оптимально делать это после выполнения нескольких операций над любым из объектов сцены.
Для того чтобы открыть сохраненный файл, выберите команду File > Project > Set (Файл > Проект > Настроить). Также можно воспользоваться командой Recent Projects (Последние проекты) меню File (Файл), которая дает доступ к списку последних редактировавшихся проектов.
Теперь вы готовы приступить к созданию сцены! Для начала смоделируем волны океана и заставим их двигаться. Это делается по следующей схеме:
Выберите тип геометрии объекта (в нашем случае это NURBS-плоскость).
Укажите плотность объекта. Для того чтобы смоделировать гребни волн достаточно гладкими, необходима повышенная плотность по сравнению с заданной по умолчанию.
Преобразуйте плоскость в упругое тело, чтобы получить возможность создания ряби на поверхности воды.
Смоделируйте движение воды с помощью соответствующего поля.
Упражнение. Создание водной глади
Первым шагом при создании любого объекта является выбор лежащего в основе типа геометрии. Для моделирования водной поверхности вполне подойдет плоскость. В данном упражнении мы используем NURBS-плоскость, так как для объектов этого класса существует возможность автоматического разбиения на большее число фрагментов. Как уже упоминалось, это необходимо для создания небольших волн на поверхности воды.
Примечание
ПРИМЕЧАНИЕ
Использование меню оперативного доступа вместо различных наборов меню может значительно ускорить процесс работы. Для одновременного включения меню всех режимов необходимо выбрать команду Hotbox Controls > Show All (Элементы управления меню оперативного доступа > Показать все). Это избавит вас от необходимости нажимать клавиатурные комбинации для перехода между режимами анимации, визуализации, моделирования и пр. Впрочем, для данного упражнения оставьте меню оперативного доступа в заданном по умолчанию виде.
Для начала включим функцию сохранения файлов с возрастающими именами. Щелкните на квадратике, расположенном справа от команды Save Scene (Сохранить сцену) меню File (Файл). Появится окно диалога Save Scene Options (Параметры сохранения сцены), в котором нужно установить флажок Incremental Save (Сохранение с возрастающими именами).
Убедитесь, что вы находитесь в режиме Modelling (Моделирование). Если это не так, нажмите клавишу F3. В меню оперативного доступа (которое появляется, если нажать и удерживать клавишу Пробел) выберите команду Create > NURBS Primitives (Создать > NURBS-примитивы). В появившемся списке объектов-примитивов щелкните на квадратике, расположенном справа от названия объекта Plane (Плоскость). Появится окно диалога NURBS Plane Options (Параметры NURBS-плоскости), показанное на Рисунок 4.2. Позднее вам предстоит преобразовать эту плоскость в упругое гибкое тело, на поверхности которого с помощью динамических эффектов будут созданы волны. Чтобы их форма была плавной, исходная плоскость должна иметь достаточно большое число вершин. Введите значение 30 в поля U Patches (U направление) и V Patches (V направление).
Анимация водной поверхности
Упражнение. Анимация водной поверхности
Теперь заставим частицы упругого тела двигаться. Можно сделать так, чтобы они перемещались назад и вперед, но полученное в результате движение воды будет наводить на мысли о качающейся ванне. К счастью, в Maya есть возможность имитации различных сил (например, ветра или силы тяжести), которые способны изменять состояние упругого тела, даже если оно остается статичным. Для воспроизведения динамики движения воды используется поле Turbulence (Турбулентность). Вам нужно изменить два параметра: Magnitude (Величина), определяющий силу поля, и Attenuation (Затухание), влияющий на распространение волн по поверхности плоскости. Например, при нулевой величине затухания волны будут распространяться по поверхности равномерно, в то время как ее увеличение приводит к уменьшению силы волн по мере удаления от центра воздействия.
В окне диалога Outliner (Структура) выделите строчку WaterPlanePartide, чтобы выделить упругое тело.
Примечание
Обратите внимание, что после выделения упругого тела вид окна каналов изменится. Это связано с тем, что в окне каналов показываются все атрибуты
частиц, которые могут быть отредактированы. Доступ к этим свойствам можно получить также на вкладке WaterPlanePartideShape окна диалога Attribute Editor (Редактор атрибутов), вызываемого с помощью клавиатурной комбинации Ctrl+a.
Убедитесь, что вы находитесь в режиме Dynamics (Динамика). Если это не так, нажмите клавишу F4. В меню оперативного доступа выберите команду Fields > Turbulence (Поля > Турбулентность). В начале координат должен появиться небольшой кружок, указывающий, что поле было создано. В окне каналов переименуйте поле, присвоив ему имя WaterWavesField.
Примечание
Альтернативной возможностью создания поля, действующего на упругое тело, является использование окна диалога Dynamic Relationships (Динамические связи), вызываемого командой Window > Relationship Editors > Dynamic Relashionships (Окно > Редакторы связей > Динамические связи). Более подробную информацию об этом можно найти в главе 13.
Теперь попробуйте снова запустить воспроизведение анимации, чтобы посмотреть, как будет двигаться плоскость после создания поля. Если разглядеть движение не удается, увеличьте масштаб изображения. Пока что это не очень похоже на движение волн, значит, нужно изменить параметры поля Turbulence (Турбулентность). В окне диалога Outliner (Структура) выделите строчку WaterWavesField. Затем в окне каналов введите в поля Magnitude (Величина) и Attenuation (Затухание) значения 6 и 0, как показано на Рисунок 4.5.
Импорт источников света и визуализация сцены
Упражнение. Импорт источников света и визуализация сцены
Вы можете продолжить выполнение предыдущего упражнения.
Сделайте видимыми все слои и вернитесь к стандартной четырехоконной конфигурации.
Щелкните на квадратике, расположенном справа от команды Import (Импорт) меню File (Файл). В окне диалога Import Options (Параметры импорта) введите в текстовое поле раздела Name clash options (Конфликтующие имена) слово Ligths, остальные настройки оставьте без изменений и нажмите кнопку Import (Импортировать). Вам нужно импортировать файл OceanLights.
Итак, все источники света, необходимые в данной сцене, импортированы и даже расставлены по своим местам. Проверьте их настройки в окне диалога Attribute Settings (Редактор атрибутов) и сохраните сцену. Результат проделанной работы можно увидеть, визуализировав сцену. В процессе визуализации программа строит проекцию изображения сцены в каждом кадре с заданной точки наблюдения с учетом падающего на объекты сцены света и назначенных им материалов и затем сохраняет полученный результат в файле. Затем полученную последовательность файлов можно просмотреть с помощью служебной программы FCheck (Контроль файлов).
Выберите в меню оперативного доступа команду Window > Rendering Editor > Render View (Окно > Редакторы визуализации > Просмотр визуализации), чтобы открыть окно диалога Render View (Просмотр визуализации). Затем выберите в меню Options (Параметры) этого окна команду Render Globals (Общие параметры визуализации). Появится окно диалога с параметрами визуализации. Введите слово OceanWorld в поле File Name Prefix (Префикс имени файла) в разделе Image File Output (Файл с выходным изображением), чтобы задать имя последовательности визуализируемых кадров. В раскрывающемся списке Frame/Animation Ext (Расширение кадра/анимации) выберите вариант namej.ext. В результате, например, кадр № 67 будет сохранен под именем OceanWorld067.tif.
Чтобы указать число кадров, которые нужно визуализировать, введите в поле End Frame (Конечный кадр) значение 360. В поле Frame Padding (Количество цифр в номере кадра) введите значение 3, чтобы все номера кадров были трехзначными. В результате в номерах кадров меньше сотого перед значимыми цифрами появятся нули. Благодаря этому система нумерации будет работать со всеми программами компиляции изображений.
Теперь нужно указать формат изображения. Если у вас мало места на диске, можно выбрать формат JPEG, но лучше всего использовать формат TIFF. В раскрывающемся списке Camera (Камера) выберите вариант BoatCamera. Снимите флажок Alpha Channel (Mask) (Альфа-канал (маска)). В разделе Anti-aliasing Quality (Качество сглаживания) выберите в раскрывающемся списке Presets (Предустановленные значения) вариант Production Quality (Качество фильма). В разделе Raytradng Quality (Качество трассирования) установите флажок Raytradng (Трассирование). Напоследок установите флажок Motion Blur (Размывание в движении) и установите переключатель Motion Blur Type (Тип размывания в движении) в положение 20 (Рисунок 4.24). Закройте окно диалога Render Globals (Общие параметры визуализации).
Первые шаги
Упражнение. Первые шаги
В Maya работа над любой сценой начинается с создания нового проекта. Имейте в виду, что на прилагаемом к книге компакт-диске есть файл с фильмом, в котором каждый шаг данного упражнения объясняется по мере его выполнения.
Выберите команду File > Project > New (Файл > Проект > Создать). Появится окно диалога New Project (Новый проект), показанное на Рисунок 4.1, в котором нужно нажать кнопку Use Defaults (По умолчанию). В итоге папки для всех компонентов проекта будут созданы автоматически.
Введите в поле Name (Имя) новое имя проекта — oceanworld. В поле Location (Маршрут доступа) нужно указать маршрут доступа к папке, которая по умолчанию будет использоваться для всех проектов Maya. В Windows 2000 и в Windows XP этот маршрут выглядит следующим образом: C:\Documents and Settings\user\My Documents\maya\projects.MMeHHO в этой папке вы должны создавать свои проекты. Значимое имя проекта поможет впоследствии опознать папки, содержащие файлы вашего проекта.
Нажмите кнопку Accept (Принять). Это приведет к автоматическому созданию нового проекта.
Примечание
В именах объектов или проектов Maya запрещено использовать пробелы. Вы можете использовать знак подчеркивания (например, new_scene) или чередование строчных и прописных букв (например, NewScene).
Создание источников света и назначение материалов
Упражнение. Создание источников света и назначение материалов
Перед тем как приступить к визуализации сцены, необходимо создать хотя бы простейшую систему освещения. В этом упражнении будет создан направленный источник света, имитирующий солнце. Затем вы назначите текстуры объектам сцены.
Прежде всего нужно добавить в сцену направленный источник света. Это делается при помощи команды Create > Lights > Directional (Создание > Источники света > Направленный свет). В окне каналов присвойте этому источнику имя SunRays. Чтобы посмотреть на действие этого источника света, нажмите клавишу 7.
Теперь нужно изменить параметры созданного источника света. Его местоположение не имеет значения, так что настроить нужно только фокус. В окне каналов введите в поля Rotate Y (Поворот по Y) и Rotate Z (Поворот по Z) значения -132 и -38 соответственно.
Введите в поля Scale X (Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) значение 10, чтобы увеличить значок источника света и тем самым упростить процесс его выделения. В разделе Shapes (Формы) окна каналов измените значение параметра Use Raytrace Shadows (Использовать трассированные тени) на on. Теперь сцена достаточно освещена, чтобы визуализировать ее и рассмотреть материалы, так что пришла пора заняться их созданием.
В Maya есть вариант компоновки окон проекции, наилучшим образом подходящий для работы с текстурами. Как показано на Рисунок 4.19, он включает окна проекции Perspective (Перспектива), Hypershade (Редактор узлов) и Render View (Визуализатор). Для перехода к данной компоновке воспользуйтесь командой Panels > Saved Layouts > Hypershade/Render/Persp (Панели > Заданные варианты компоновки > Hypershade/Render/Persp).
Создание текстур является очень сложным процессом, поэтому в данном упражнении мы воспользуемся уже готовыми вариантами раскраски. Для их импорта щелкните на квадратике, расположенном справа от команды Import (Импорт) меню File (Файл), и в появившемся окне диалога Import Options (Параметры импорта) установите флажок Group (Группы). В раскрывающихся списках раздела Name Clash Options (Конфликтующие имена) выберите такие варианты, чтобы получилась строка Resolve clashing nodes with this string (Разрешить конфликтующие узлы с этой строкой), и введите в появившееся справа текстовое поле слово Water. Затем нажмите кнопку Import (Импортировать). В появившемся окне диалога выберите файл OceanWater.ma (он находится в папке Chapter_04\ Shaders\ на компакт-диске) и нажмите кнопку Import (Импортировать). В итоге в окне Hypershade (Редактор узлов) на вкладке Materials (Материалы) появится материал OceanWater, как показано на Рисунок 4.20.
В окне Hypershade (Редактор узлов) щелкните правой кнопкой мыши на материале OceanWater и выберите в появившемся меню команду Graph Network (Сеть узлов). Это приведет к появлению в рабочей области окна Hypershade (Редактор узлов) всех узлов, использовавшихся для создания данного типа раскраски. Эту информацию можно использовать, чтобы разобраться, как работает раскраска, и в дальнейшем создать свою собственную.
Создание камеры
Упражнение. Создание камеры
В этом упражнении вам предстоит визуализировать сцену с точки зрения человека, находящегося в шлюпке. Для этого нужно создать камеру и поместить ее в шлюпку.
Перейдите к стандартной четырехоконной конфигурации, используя команду Panels > Saved Layouts» Four View (Панель > Заданные варианты компоновки > Четы-рехоконная проекция). Для начала нужно создать фиксатор камеры в определенной точке. Выберите команду Locator (Фиксатор) меню Create (Создание) и назовите созданный объект именем CameraHinge. Теперь фиксатор нужно разместить непосредственно над шлюпкой. Активируйте инструмент Move (Переместить), нажав клавишу w, и переместите фиксатор примерно в такое же положение, как показано на Рисунок 4.17.
Теперь нужно заставить фиксатор двигаться вместе со шлюпкой. Откройте окно диалога Outliner (Структура), нажмите среднюю кнопку мыши и перетащите строчку CameraHinge на строчку BoatG.
Теперь нужно импортировать заранее настроенную для этой сцены камеру. Выберите команду Import (Импорт) меню File (Файл) и загрузите с компакт-диска файл BoatCamera.mb. В результате в начале координат окажется камера, к которой привязано фоновое изображение неба. В окне диалога Outliner (Структура) щелкните на квадратике, со знаком «плюс» слева от имени группы BoatG и выделите имя объекта CameraHinge. Затем, нажав клавишу Ctrl, щелкните на строчке BoatCamera.
Для привязки камеры к фиксатору нужно настроить ограничитель, который позволяет соединить центр ограничиваемого объекта с центром объекта-мишени. Убедитесь, что вы находитесь в режиме Animation (Анимация) и выберите в меню оперативного доступа команду Constrain > Point (Ограничение > Точка). Дополнительная анимация сцены
Теперь камера будет перемещаться вслед за фиксатором, а следовательно, и за шлюпкой.
Создание поверхности
Упражнение. Создание поверхности
В этом упражнении вы узнаете о том, как организовать элементы сцены путем создания слоев. Также вы убедитесь, что группировка объектов облегчает процесс выделения элементов в окнах диалога Outliner (Структура сцены) и Hypergraph (Просмотр структуры).
Для создания земной поверхности необходима еще одна NURBS-плоскость. Выберите команду Create > NURBS Primitives > Plane (Создать > NURBS-примитивы > Плоскость) в главном меню, чтобы создать плоскость с теми же параметрами, что и в предыдущем случае.
В окне каналов присвойте этой плоскости имя GroundPlane. Она полностью совпадает с плоскостью WaterPlane, потому что создана в начале координат. Но поверхность земли должна находиться под водой, поэтому нужно переместить ее в отрицательном направлении оси Y. Введите в поле Translate Y (Смещение по оси Y) окна каналов значение -2.
В данный момент поверхность совершенно плоская. Для придания ей более реалистичного вида и создания небольшого острова придется поработать с NURBS-поверхностыо. Это довольно сложно сделать в данный момент, так как обзор загораживает плоскость, изображающую воду, поэтому придется или скрыть ее, или переместить в отдельный слой. Последняя операция выполняется в редакторе слоев, расположенном в нижней части окна каналов, как показано на Рисунок 4.7. Выделите объект WaterPlane и выберите команду Create Layer (Создать слой) в меню Layers (Слои) редактора слоев.
Создание шлюпки
Упражнение. Создание шлюпки
Теперь пришла пора создать шлюпку, которая будет перемещаться по поверхности воды. Для ее построения мы используем NURBS-кривые. Скройте все слои в сцене и нажмите клавишу Пробел для перехода к четырехоконной конфигурации.
По форме шлюпка напоминает половину конуса, так что начнем ее создание с выбора команды Create > NURBS Primitives (Создать > NURBS-примитивы). В появившемся списке объектов-примитивов щелкните на квадратике, расположенном справа от названия объекта Cone (Конус), чтобы открыть окно диалога NURBS Cone Options (Параметры NURBS-конуса). Установите переключатель Axis (Ось) в положение Z, чтобы изменить направление главной оси конуса. Введите значение 180 в поле End Sweep Angle (Конечное значение угла). В результате будет создана только половина конуса. Установите переключатель Caps (Основание) в положение Bottom (Снизу), чтобы у конуса появилось нижнее основание. Установите флажок Extra Transform on Caps (Дополнительные преобразования основания) и введите значение 4 в поле Number of Spans (Число секций по вертикали).
Нажмите кнопку Create (Создать), и вы получите объект с заданными параметрами. Если вас не устраивает масштаб объекта, нажмите клавишу f. Имейте в виду, что при этом объект должен быть выделен. Присвойте конусу имя BoatOutside.
Примечание
ПРИМЕЧАНИЕ
При работе с окнами проекции в Maya имеет значение положение указателя мыши. В данном случае, чтобы изменить масштаб конуса в определенном окне проекции, достаточно поместить указатель мыши в его пределах и нажать клавишу f.
Теперь нужно изменить форму конуса таким образом, чтобы он стал похож на небольшую шлюпку. Щелкните правой кнопкой мыши на окне проекции Side (Сбоку) и нажмите клавишу Пробел, чтобы развернуть это окно на весь экран. Убедитесь, что конус по-прежнему выделен, и в окне каналов введите в поля Scale X (Масштабировать по X), Scale Y (Масштабировать по Y) и Scale Т. (Масштабировать по Т) значения 0,5, 0,75 и 1,5 соответственно.
В окне проекции Perspective (Перспектива) конус пока что не напоминает нижнюю часть шлюпки. Исправить это можно путем перемещения управляющих вершин объекта. Нажмите клавишу F8 для перехода в режим редактирования подобъектов. Щелкните на объекте правой кнопкой мыши и выберите в появившемся меню вариант Control Vertex (Управляющая вершина).
От положения управляющих вершин зависит форма конуса. В окне проекции Side (Сбоку) по очереди выделяйте наборы вершин, расположенные вдоль дна шлюпки (в данной проекции видны только две вершины, но выделенными оказываются три), и затем, активизируя инструмент Move (Переместить), двигайте их вниз, формируя плоское дно шлюпки. Начните эту операцию с правого края. В результате вы должны получить приблизительно такой объект, как показанный на Рисунок 4.10. Обратите внимание, что на этом рисунке выделены все управляющие вершины, подвергшиеся преобразованию, в то время как в перемещении участвовали только группы из трех вершин.
Перейдите в окно проекции Тор (Вид сверху) и разверните его на весь экран. Вы увидите, что передняя часть объекта имеет слишком заостренную форму. Начните ее корректировку с самого широкого конца будущей шлюпки. Выделите рамкой все вершины в этом ряду и, активировав инструмент Scale (Масштабировать), переместите вправо маркер красного управляющего вектора, то есть измените масштаб изображения по оси X. По очереди выделяйте ряды вершин и проделывайте над ними вышеописанную операцию. В результате должен получиться объект, напоминающий показанный на Рисунок 4.11.
Узел place3dTexture_boat определяет
Рисунок 4.22. Узел place3dTexture_boat определяет размещение текстуры на поверхности шлюпки
Выделите упомянутый узел и откройте окно диалога Attribute Editor (Редактор атрибутов), нажав комбинацию клавиш Ctrl+a. Щелкните на кнопке Fit to group bbox (Разместить на поверхности габаритного контейнера группы) в разделе 3D Texture Placement Attributes (Параметры размещения трехмерной текстуры). В окне проекции Perspective (Перспектива) появится зеленая рамка, отмечающая положение текстуры на поверхности шлюпки.
Рамка расположена под углом к поверхности шлюпки, так как последняя была развернута в процессе привязки к траектории движения. Нужно временно повернуть шлюпку в исходное положение и назначить ей узел размещения. Выделите объект BoatG и измените все значения параметров преобразования поворота в окне каналов на нулевые. Параметры, значения которых вы поменяли, выделены в окне каналов оранжевым цветом. Это значит, что данные значения использовались для задания положения объекта в ключевом кадре. Соответственно, если сейчас включить воспроизведение анимации, шлюпка автоматически примет нужную ориентацию по отношению к траектории движения.
Снова выделите узел place3dTexture_boat в окне проекции Hypershade (Редактор узлов), вызовите окно диалога Attribute Editor (Редактор атрибутов), если вы его закрыли, и снова щелкните на кнопке Fit to group bbox (Разместить на поверхности габаритного контейнера группы). Теперь текстура корректно размещена на поверхности шлюпки, как показано на Рисунок 4.23.

Рисунок 4.23. Результат настройки положения узла place3dTexture_boat
Если теперь воспроизвести анимацию, окажется, что при перемещении шлюпки текстура остается на исходном месте. То есть возникает эффект скольжения текстуры по поверхности объекта. Этого можно избежать, сделав объект BoatG предком узла place3dTexture_boat. Откройте окно диалога Outliner (Структура) и средней кнопкой мыши перетащите строчку Groupl на строчку BoatG. Теперь при воспроизведении анимации положение текстуры будет меняться при изменении ориентации шлюпки.
Сохраните сцену.
В месте расположения фиксатора будет располагаться камера
Рисунок 4.17. В месте расположения фиксатора будет располагаться камера

Примечание
ПРИМЕЧАНИЕ
Причина, по которой нельзя было связать камеру со шлюпкой в иерархиче-скую цепочку, состоит в том, что объект-потомок наследует атрибуты объекта-предка. В итоге, решив, например, изменить размеры шлюпки при помощи инструмента Scale (Масштабировать), вы заодно измените размеры камеры.
Выделите камеру в окне проекции Perspective (Перспектива) и выберите команду Look Through Selected (Вид из точки расположения выделенного объекта) меню Panels (Панели). В результате вы увидите сцену как бы через объектив камеры. Тот же самый эффект можно получить, выбрав команду Panels > Perspective > BoatCamera (Панели > Перспектива > BoatCamera). Если в данный момент видны не все слои, сделайте их видимыми и посмотрите анимацию в действии.
Легко заметить, что камера перемещается вместе со шлюпкой, но не меняет своей ориентации при поворотах траектории. Решить эту проблему можно с помощью наложения ограничения на ориентацию фиксатора. В окне диалога Outliner (Структура) выделите строки CameraHinge и BoatCamera, а затем выберите в меню оперативного доступа команду Constrain > Orient (Ограничение > Ориентация). Теперь камера будет поворачиваться вслед за фиксатором.
Если камера имеет неправильную ориентацию, это легко исправить, выделив фиксатор и поворачивая его вокруг оси Y до тех пор, пока камера не окажется нацеленной прямо на нос шлюпки, как показано на Рисунок 4.18. Снова воспроизведите анимацию, чтобы посмотреть, как изменился вид сцены через объектив камеры. Сохраните сцену.

Рисунок 4.18. Фиксатор ограничивает вращение камеры
В окне диалога NURBS Plane Options
Рисунок 4.2. В окне диалога NURBS Plane Options можно изменить параметры создаваемой плоскости
Теперь нужно указать размер плоскости. Введите в поля Length (Длина) и Width (Ширина) значение 60 и нажмите кнопку Create (Создать). В окне каналов выделите системное имя плоскости и измените его на WaterPlane.
Совет
Если сейчас скрыть координатную сетку, плоскость будет видна более отчетливо. Это можно сделать, выбрав команду Grid (Сетка) меню Display (Отображение).
В результате преобразования NURBS-плоскости в упругое тело будет получена совокупность частиц, находящихся в тех же самых местах, где были расположены управляющие вершины, что даст вам возможность применить динамические эффекты. Для работы с упругими телами нужно перейти в режим Dynamics (Динамика). Это делается нажатием клавиши F4. В меню оперативного доступа выберите команду Soft/Rigid Bodies (Упругие/твердые тела) и щелкните на квадратике, расположенном справа от команды Create Soft Body (Создать упругое тело).
Появится окно диалога Soft Options (Параметры упругости), показанное на Рисунок 4.3. В раскрывающемся списке Creation Options (Параметры создания) выберите вариант Duplicate, Make Original Soft (Дублировать, сделать исходный объект упругим). Установите флажки Hide Non-Soft Object (Скрыть неупругий объект) и Make Non-Soft a Goal (Сделать неупругий объект целевым), а в текстовое поле Weight (Вес) введите значение 0,25. Нажмите кнопку Create (Создать). В результате появится скрытая копия плоскости WaterPlane, а исходная плоскость преобразуется в упругое тело. Частицы упругого тела будут притягиваться к скрытой плоскости, что позволит избежать слишком сильных деформаций водной поверхности. Степень притяжения частиц к целевому объекту задается при помощи параметра Weight (Вес). В отсутствие целевого объекта под действием поля начнутся бесконтрольные деформации упругого тела. Если сделать вес равным единице, частицы упругого тела немедленного окажутся притянутыми к целевому объекту, а вес, равный нулю, не оказывает никакого эффекта на их положение. Промежуточные значения веса приводят к постоянному изменению положения частиц, что идеально подходит для имитации движения волн.
Вариант компоновки окон проекции
Рисунок 4.19. Вариант компоновки окон проекции, наилучшим образом подходящий для работы с текстурами
Выделение области которая будет
Откройте окно диалога Outliner (Структура), нажмите среднюю кнопку мыши и перетащите строчку placeBdTexture17 на строчку WaterGroup.
Теперь нужно импортировать раскраску для земной поверхности. Повторите действия, описанные в пятом шаге, заменив слово Water в текстовом поле раздела Name clash options (Конфликтующие имена) словом Ground, и нажмите кнопку Import (Импортировать). В появившемся окне диалога выделите файл Oceanround.ma и снова нажмите кнопку Import (Импортировать). В результате в окне Hypershade (Редактор узлов) появится материал с именем OceanGround. Выделите плоскость GroundPlane и, щелкнув правой кнопкой мыши на новом материале, выберите в появившемся меню команду Assign Material to Selection (Назначить материал выделенному объекту). Изображение в окне проекции Render View (Визуализатор) будет автоматически обновлено. Сохраните сцену.
Оставьте видимым только слой BoatL. Импортируйте материал OceanBoat.ma, используя процедуру, описанную в пятом шаге. В текстовое поле раздела Name clash options (Конфликтующие имена) введите слово Boat. В окне диалога Outliner (Структура) выделите строчку BoatG, затем щелкните правой кнопкой мыши на матер!гале Ocean Boat и выберите в появившемся меню команду Assign Material to Selection (Назначить материал выделенному объекту). Перейдя в окно проекции Perspective (Перспектива), нажмите клавишу f, чтобы сфокусироваться на изображении шлюпки.
Визуализируйте шлюпку, и вы заметите, что текстура выглядит не совсем так, как требуется. Дело в том, что узлы размещения текстуры неправильно выровнены на поверхности объекта. Чтобы исправить их положение, щелкните правой кнопкой мыши на материале OceanBoat и выберите в появившемся меню команду Graph Network (Сеть графов). В сети материала OceanBoat есть узел place3dTexture_boat (Рисунок 4.22). Нужно изменить значения координат этого узла.
Продвинутая 3D графика в пакете Maya
Боковой профиль 14 досок каждая
Рисунок 5.14. Боковой профиль 14 досок, каждая из которых имеет ширину четыре дюйма. Зазор между досками имеет ширину один дюйм

Совет
СОВЕТ
Если вы ошиблись при размещении точки, воспользуйтесь клавишей Backspace для ее удаления. Также можно нажать клавишу Insert и переместить точку в нужное место, не покидая режима создания кривой. По окончании перемещения достаточно снова нажать клавишу Insert, а потом нажать и удерживать клавишу х, чтобы снова получить возможность создания узловых точек кривой.
Совет
СОВЕТ
Если в процессе создания кривой вы подошли к краю экрана, одновременно нажмите клавишу Alt и среднюю кнопку мыший перетащите указатель влево, перемещая видимую область экрана.
Закончив создание точек кривой, нажмите клавишу Enter. Форма кривой будет зафиксирована, а сама она станет ярко-зеленой. Присвойте кривой имя porchProfile.
В каком бы месте пространства ни была создана кривая, ее опорная точка будет располагаться в начале координат. Но для удобства выполнения преобразований желательно, чтобы она находилась в геометрическом центре объекта. Для перемещения опорной точки воспользуйтесь командой меню оперативного доступа Modify t Center Pivot (Изменить > Центрировать опорную точку). Если теперь нажать клавишу w для перехода в режим перемещения объекта, вы увидите, что значок преобразования появится в центре кривой.
Нажмите клавишу Пробел для перехода к четырехоконной конфигурации, затем поместите указатель мыши в пространство окна проекции Тор (Вид сверху) и снова нажмите клавишу Пробел, чтобы развернуть это окно на весь экран.
Нужно перенести кривую к нижнему краю дома, но для начала настолько увеличьте масштаб этой области, чтобы отчетливо видеть ячейки сетки. В поле Translate Z (Смещение по оси Z) окна каналов введите значение 94, как показано на Рисунок 5.15, а затем вернитесь к четырехоконному представлению.
Четырехкратным дублированием лежащего
ПРИМЕЧАНИЕ
Если при каркасном отображении NURBS-объектов включен режим минимальной детализации, рассмотреть выделенный объект иногда бывает не так-то легко. Помните, что вы всегда можете изменить уровень детализации, нажимая клавиши 1, 2 и 3.
Сформируем контур стен, продублировав квадрат. Впоследствии на основе этих двух кривых можно получить поверхность стен, соединив их друг с другом методом лофтинга. Убедитесь, что у вас выделен объект OuterWallcurvel и выберите в меню оперативного доступа команду Edit > Duplicate with Transform (Правка > Дублирование с преобразованием). Это приведет к появлению дубликата непосредственно поверх исходного объекта. В окне каналов введите в поле Translate Y (Смещение по оси Y) значение -111.
Не снимая выделения с объекта QuterWallcurveZ, снова выполните команду Duplicate with Transform (Дублирование с преобразованием). Для этого дубликата сделайте значение параметра Translate Y (Смещение по оси Y) равным -107, а в поля Scale X (Масштабирование по оси X) и Scale Z (Масштабирование по оси Z) введите значения 136 и 196 соответственно. Еще два раза выполните дублирование с преобразованием, вводя в поле Translate Y (Смещение по оси Y) числа -105 и -33 соответственно. В итоге требуется получить пять прямоугольников, как показано на Рисунок 5.9.
Теперь пришло время применить метод лофтинга. Щелкните на ближайшей к вам стороне объекта OuterWallcurveS. В окне каналов посмотрите на имя выделенной кривой. Это должна быть кривая leftnurbsSquarel. Нажмите клавишу Shift и щелчком выделите сторону прямоугольника OuterWaltcurve4, расположенную непосредственно под кривой leftnurbsSquarel. Одновременно нажмите комбинацию клавиш Ctrl+Alt+z и левую кнопку мыши. В появившемся контекстном меню щелкните на квадратике, расположенном справа от команды Loft (Лофтинг). В появившемся окне диалога Loft Options (Параметры лофтинга) прежде всего выберите команду Reset Settings (Сбросить настройки) меню Edit (Правка), затем установите переключатель Surface Degree (Кривизна поверхности) в положение Linear (Линейная) и нажмите кнопку Loft (Создать Loft-поверхность). Появится первая стена, вид которой показан на Рисунок 5.10. Присвойте ей имя WallSide_l. Для перехода в режим показа тонированных оболочек объектов нажмите клавишу 5.
Четырехкратным дублированием лежащего
Двигаясь по часовой стрелке, повторите вышеописанную операцию, формируя остальные стены. Проверьте в окне каналов, что вы начали процесс создания стен с выделения кривой bottomnurbsSquarel. Теперь уже не требуется вызывать окно диалога Loft Options (Параметры лофтинга). После выделения всех нужных кривых достаточно нажать клавишу д, которая инициирует повторное выполнение последней команды. Назовите полученную поверхность WallSide_2. Таким же образом сформируйте поверхности WallSide_3 и WaUSide_4. Этот метод создания поверхностей гарантирует, что все они будут иметь идентичные параметры и им легко будет назначить карту текстуры.
Совет
Помните, что клавиша g служит для повторного выполнения последней использовавшейся команды. Кроме того, выбрав в меню оперативного доступа команду Recent Commands (Последние команды), вы получите список из нескольких последних команд.
Процесс создания внешней стены дома будет завершен после объединения четырех поверхностей в одну группу. Чтобы избежать случайного выделения кривых, на основе которых сформированы поверхности, воспользуйтесь окном диалога Outliner (Структура), которое вызывается выбором в меню оперативного доступа команды Window > Outliner (Окно > Структура) или нажатием комбинации клавиш Shift+0. Затем выберите команду Edit > Group (Правка > Группировка). Полученной группе присвойте имя OuterWall.
Создайте еще один слой, назвав его OuterWallsL Выделите группу OuterWall и, щелкнув правой кнопкой мыши на имени слоя, выберите в появившемся меню команду Add Selected Objects (Добавить выделенные объекты). Скройте этот слой, чтобы облегчить процесс выделения кривых.
Контекстные меню и пользовательский нтерфейс
Контекстные меню и пользовательский нтерфейс
Работу с Maya можно сделать быстрой и эффективной. Наблюдение за работой опытных пользователей создает впечатление магического действа, потому что сцена, словно по волшебству, возникает из ничего при минимальном количестве нажатий клавиш и использовании мыши. Секрет такой быстрой работы состоит в создании контекстных меню, которые помогают увеличить продуктивность и скорость различных действий. Если нажать и удерживать определенные клавиши, нажимая при этом левую кнопку мыши, то появится меню, похожее на компас. Перетаскивание указателя мыши на любую из его команд приводит к ее выполнению. В случае быстрого выполнения описанных действий вы успеете заметить только линию на экране и быстро промелькнувшее имя выполняемой команды.
После нескольких недель работы вы изучите контекстные меню и сможете мгновенно создавать и редактировать объекты. Так как процесс их использования является двухступенчатым (сначала нужно нажать клавиши, а потом сделать вы-эор при помощи указателя мыши), имеет смысл сгруппировать связанные друг с цругом команды таким образом, чтобы их перечень вызывался нажатием одной и гой же комбинации. Например, можно сделать так, чтобы комбинация клавиш Alt+c приводила к переходу в режим редактирования кривых. При этом две наиболее часто используемые в этом режиме команды можно расположить слева и права. В результате нажатия комбинации клавиш Alt+c, сопровождаемого нажатием левой кнопки мыши и перемещением указателя влево, как показано на Рисунок 5.1, будет быстро включен требуемый режим редактирования. Со временем подобные действия можно научиться выполнять настолько быстро, что со стороны будет невозможно проследить за ними.
Начало нового проекта В отличие
Совет
После изменения единиц измерения у вас могут возникнуть проблемы с изменением масштаба. Например, вдруг может оказаться, что половина окна проекции просто отрезана. Причиной этого является слишком малое значение параметра Far Clip Plane (Дальняя плоскость отсечки). Убедитесь, что у вас активно окно проекции Perspective (Перспектива) и выберите в меню оперативного доступа команду View > Camera Attribute Editor (Вид > Редактор атрибутов для камеры). В поле Far Clip Plane (Дальняя плоскость отсечки) раздела Camera Attributes (Параметры камеры) введите значение 10 000. Если же объект исчезает при попытке разглядеть его поближе, измените значение параметра Near Clip Plane (Ближняя плоскость отсечки).
Настройка интерфейса и загрузка контекстных меню
Настройка интерфейса и загрузка контекстных меню
Итак, прежде всего необходимо импортировать контекстные меню и клавиатурные комбинации, полезные для выполнения упражнений этой главы. В главе 14 рассказывается о способах создания пользовательских контекстных меню и связывания их с определенными клавиатурными комбинациями, но в данном случае для экономии времени мы предлагаем вам воспользоваться имеющимися на компакт-диске заготовками.
Обратите внимание, что наши рекомендации рассчитаны на пользователей, работающих с операционными системами семейства Windows. Если вы используете Linux, Mac OS X или IRIX, вы найдете аналогичные папки и файлы на жестком диске вашего компьютера. В случае возникновения вопросов, обратитесь к руководству пользователя.
Убедитесь, что окно программы Maya 4 закрыто. Его открытие после завершения выполнения данного упражнения приведет к загрузке нужных файлов.
Вставьте в дисковод прилагаемый к книге компакт-диск и откройте папку Chapter_05\Marking_Menus. Выделите любой из файлов этой папки и нажмите комбинацию клавиш Ctrl+a. В результате выделенными окажутся все файлы. Щелкните на них правой кнопкой мыши и выберите в появившемся меню команду Сору (Копировать).
Теперь нужно выбрать папку, к которой будет обращаться программа для загрузки контекстных меню. В операционной системе Windows NT это может быть папка My Documents\Maya\4.0\prefs\Marking Menus или winnt\profiles\ Administrator\maya\4.0\prefs\markingMenus. Если же вы работаете с Windows 2000, нужная папка может находиться по адресу Documents and Settings\Administrator\ My Documents\Maya\4.0\prefs\markinMenus. Если ваш компьютер подключен к локальной сети, маршрут доступа будет содержать вместо имени администратора ваше имя, В любом случае искомая папка будет располагаться на системном диске. Проще всего найти ее, заставив систему искать файл windowprefs.mel Поместите скопированные файлы в найденную папку.
Скопируйте содержимое папки Chapter_05\Hotkeys, расположенной на компакт-диске. Скопируйте их в папку prefs, расположенную по одному из указанных на предыдущем шаге адресов.
Теперь откройте окно программы Maya. Перед загрузкой контекстных меню будет нелишним скрыть практически все элементы интерфейса, освободив тем самым дополнительное место. В меню оперативного доступа выберите команду Display > UI Elements > Hide UI Elements (Отображение > Элементы интерфейса > Скрыть элементы интерфейса). Обратите внимание, сколько свободного пространства появилось в результате выполнения этой команды.
Однако некоторые элементы интерфейса все же желательно иметь перед глазами. Снова выберите команду Display > UI Elements (Отображение интерфейса) и в открывшемся списке установите флажки рядом с названиями элементов Help Line (Строка подсказки) и Command Line (Командная строка). Дело в том, что при создании элементов в этих строках отображаются сообщения об ошибках и вспомогательная информация. Теперь вам осталось скрыть главное меню и меню окна проекции. Для этого используются клавиатурные комбинации Ctrl+m и Shift+m соответственно.
Примечание
ПРИМЕЧАНИЕ
Альтернативным способом изменения видимости строк меню является окно диалога Preferences (Параметры), для вызова которого используется команда Window > Setting/Preferences > Preferences (Окно > Настройки/Параметры > Параметры). В списке Categories (Категории) выберите вариант Interface (Интерфейс) и снимите или установите флажки Main Window (В главном окне) и In Panels (В окнах проекции) в разделе Show Menubar (Показывать строку меню). Можно пойти дальше и скрыть даже строку заголовка, но имейте в виду, что это осложнит работу с несколькими приложениями одновременно.
7. Выберите в меню оперативного доступа команду File > Save Preferences (Файл > Сохранить настройки). Упрощенный интерфейс, оптимизированный для выполнения упражнений этой главы, готов к использованию.
Настройка меню оперативного доступа
Настройка меню оперативного доступа
Первый взгляд на новый вид окна программы Maya может привести в недоумение, потому что теперь, когда почти все элементы интерфейса скрыты, возникает ощущение отсутствия контроля над происходящим. Но на самом деле любой командой по-прежнему можно воспользоваться с помощью меню оперативного доступа. Рассмотрим процесс настройки этого меню.
1. Чтобы убедиться, что вы имеете доступ ко всем меню, нажмите и удерживайте клавишу Пробел, щелкните на команде Hotbox Controls (Элементы управления меню оперативного доступа) и затем выберите вариант Show All (Показать все). Для получения доступа к функции, для которой не задана клавиатурная комбинация или контекстное меню, используйте меню оперативного доступа. Если окажется, что вы раз за разом выбираете в этом меню один и тот же набор команд, имеет смысл назначить им клавиатурные комбинации или собрать их в контекстное меню.
Примечание
Примечание
Если вы работаете с пакетом Maya Unlimited, следует скрыть ряд пунктов меню оперативного доступа, оставив только функции, которые вам предстоит использовать. Выберите в меню оперативного доступа команду Hotbox Controls (Элементы управления меню оперативного доступа) и снимите флажки Show Cloth Menus (Показать меню для работы с тканями) и Show Live Menus (Показать меню «живой камеры»).
2. Выберите в меню оперативного доступа команду File > Save Preferences (Файл > Сохранить настройки).
ВНИМАНИЕ
Если хотя бы одно из окон проекции не является активным, нажатие и удер-жание клавиши Пробел не приведет к появлению меню оперативного доступа. Если поверх окон проекции открыто какое-либо окно диалога, нужно щелкнуть на нужном окне проекции правой кнопкой мыши, чтобы перевести его в активное состояние, не снимая при этом выделение с объектов. Обратите внимание, что в результате вокруг окна появляется синяя рамка.
Перечислим клавиатурные комбинации, использование которых в сочетании с нажатием левой кнопки мыши приводит к появлению загруженных вами контекстных меню.
| Контекстное меню |
Клавиатурная комбинация |
| mfNURBSPrimitives_Press |
Ctrl+z |
| mfNURBSediting_Press |
Alt+z |
| mfNURBSsurface_Press |
Ctrl+Alt+z |
| mfPolygonPrimitives_Press |
Ctrl+x |
| mfPolygonEditing_Press |
Alt+x |
| mfCurvesCreation_Press |
Ctrl+c |
| mfCurvesEditing_Press |
Alt+c |
Попробуйте самостоятельно вызвать каждое из них.
А вот перечень клавиатурных комбинаций, которые были добавлены или переназначены.
| Функция |
Клавиатурная комбинация |
| Script Editor (Редактор сценариев) |
Shift+S |
| Hypergraph (Просмотр структуры) |
Shift+H |
| Attribute Editor (Редактор атрибутов) |
Ctrl+a |
Show/Hide Channel Box
(Показать/Скрыть окно каналов) |
Shift+С |
| Hypershade (Редактор узлов) |
Shift+T |
| Outliner (Структура) |
Shift+0 |
Toggle the Time Slider on/off
(Показать/Скрыть ползунок таймера анимации) |
Alt+t |
| Undo (Отменить) |
Z |
| Visor (Просмотр образцов) |
Shift+V |
Клавиатурные комбинации расположены таким образом, чтобы их было удобно нажимать левой рукой. При желании их всегда можно переназначить. Если вы левша, то вам, скорее всего, захочется переназначить также клавиши, управляющие преобразованиями (q, w, e, r). Скорость работы увеличивается, если не приходится постоянно перемещать руку из левой части клавиатуры в правую. В данном случае Требуется научиться нажимать вышеупомянутые клавиатурные комбинации вслепую. По мере изучения материала книги вы будете знакомиться со все новыми и новыми комбинациями.
Первые комбинации клавиш, которые вам предстоит запомнить в этой главе:
Ctrl+z. Дает доступ к меню, которое содержит инструменты создания NURBS-поверхностей.
Alt+z. Вызывает контекстные меню с командами редактирования NURBS-no-верхностей.
Щелчок правой кнопкой мыши на окне проекции, в котором выделен NURBS-объект, приводит к появлению контекстного меню для выделенных элементов NURBS-сетки, например изопараметрических кривых или узловых точек.
Неоднородные рациональные Всплайны
Неоднородные рациональные В-сплайны
В компьютерной графике существует два подхода к моделированию объектов: на основе полигональных сеток и на основе NURBS-кривых. Большинство программ для создания трехмерной анимации работает только с полигонами. В Maya кроме этого используется более сложная и мощная система моделирования, которая основана на неоднородных рациональных сплайнах Безье (NURBS, Non-Uniform Rational Bezier Splines). Созданная таким способом поверхность похожа на трехмерный искривленный лист в пространстве. Существуют ограничения на их построение, соединение друг с другом и деление на части, но в принципе это очень гибкие объекты. Основное их преимущество состоит в том, что в Maya они остаются чистыми кривыми, то есть математическими конструкциями. Уровень детализации получаемых на их основе поверхностей можно указывать как в окне проекции, так и при визуализации. Грубую огранку объектов, возникающую при попытке создать искривленную поверхность из полигональной сетки, легко можно убрать при работе с NURBS-поверхностями. Достаточно увеличить уровень детализации.
Моделирование на основе NURBS-кривых не сводится к соединению друг с другом отдельных фрагментов. В отличие от полигонов, имеющих фиксированную форму, в NURBS-моделировании трехмерные объекты создаются из кривых и поверхностей, что предоставляет неограниченные возможности их использования. Если вам нравится проектирование архитектуры и решение различных задач, то вы определенно почувствуете вкус к NURBS-моделированию.
Попробуем дать вам представление о природе неоднородных рациональных В-сплайнов. Их можно рассматривать как разновидность сплайна, используемого для определения кривых, которые лежат в основе математической структуры, задающей вид NURBS-поверхности. В этой главе мы покажем вам основные приемы работы с объектами данного типа, не пускаясь в глубокие теоретические изыскания. Обучаться компьютерному моделированию лучше всего методом проб и ошибок, поэтому в данной главе вы получите возможность на практике исследовать природу изучаемого объекта. Чтобы облегчить вам запоминание большого количества деталей, мы будем по ходу дела упоминать все команды, клавиатурные комбинации, поля, значения и прочие необходимые подробности. По мере чтения книги такие подсказки будут требоваться вам все реже и реже, но на начальном этапе вряд ли возможно без этого обойтись.
Подведем итоги
Подведем итоги
В этой главе на примере были продемонстрированы стандартные подходы к моделированию на основе NURBS-кривых. Вы получили возможность на практике познакомиться со следующими приемами:
Создание и редактирование NURBS-примитивов. В упражнениях этой главы объект-примитив Cube (Куб) использовался в качестве отправной точки для моделирования. Мы продемонстрировали вам процесс удаления частей примитива и редактирования положения узловых точек.
Временное включение режима привязки. Для повышения точности преобразований в процессе редактирования объекта используется привязка к узлам сетки.
Ввод точных данных преобразования в поля окна каналов. Это возможность точно указать размер и величину смещения или поворота объекта.
Создание кривых. Кривые, нарисованные вашими руками, используются в дальнейшем в методах выдавливания, лофтинга и т. п. для получения трехмерных объектов.
Пересечение поверхностей. Существует возможность создавать кривые в местах пересечения двух поверхностей.
Выдавливание кривых. На основе единственной кривой с помощью метода выдавливания можно сформировать поверхность.
Соединение кривых методом лофтинга. Метод лофтинга используется для создания поверхности между любыми двумя кривыми.
Влияние истории создания на редактирование поверхностей. Благодаря наличию истории создания появляется возможность вносить изменения в действия, произведенные ранее. Например, перемещение управляющей точки кривой, на основе которой методом лофтинга была получена поверхность, приводит к изменению формы этой поверхности.
Подрезка. Данная операция позволяет убрать ненужные фрагменты поверхности.
Работа со слоями. Разместив элементы сцены в различных слоях, можно легко сделать видимыми только объекты, редактированием которых вы занимаетесь в данный момент.
Теперь, после создания основных плоских объектов, пришла пора познакомиться с более сложными методами и поработать с искривленными поверхностями. Именно этому посвящена следующая глава «Дополнительные приемы работы с NURBS-объектами». Кроме того, вам предстоит познакомиться с методикой создания различных отверстий, ведь модель дома пока что не имеет ни окон, ни дверей. Также вы закончите моделирование крыльца, добавив к нему ограждение.
Построение дома
Построение дома
Преимущества моделирования на основе NURBSкривых
Преимущества моделирования на основе NURBS-кривых
Каждая из методик моделирования имеет свои сильные и слабые стороны, и выбор методики, наилучшим образом соответствующей конкретной задаче, требует немалого опыта в данной области. При выборе метода создания конкретного объекта нужно учитывать несколько факторов. NURBS-кривые хорошо подходят для моделирования объектов органического происхождения, например Животных, растений, фруктов, которые можно строить путем стыковки друг с другом гладких фрагментов поверхности. Также очень удобно использовать NURBS-кривые для построения серийно выпускаемых промышленных изделий, которые одновременно характеризуются точностью исполнения и обтекаемыми формами. К ним относятся транспортные средства, прессованные детали, различные приборы и прочие объекты с искривленными поверхностями, созданные руками человека.
Если вы сомневаетесь в правильности выбора способа моделирования, имейте в виду, что можно начать построение объекта с NURBS-кривых, а затем преобразовать его в сетку полигонов. Эта возможность является одним из основных преимуществ моделирования на основе NURBS-кривых. Например, чтобы освободиться от швов в местах сочленений отдельных частей при создании человеческой фигуры, ее достаточно преобразовать в сетку полигонов и затем связать отдельные фрагменты в единый объект. Благодаря наличию истории создания объекта при редактировании лежащих в основе фигуры NURBS-кривых ее вид будет автоматически изменяться даже после вышеописанного преобразования. Впрочем, моделирование на основе NURBS-кривых имеет и отрицательные стороны. При создании объектов, которые впоследствии должны быть анимированы, можно заметить наличие швов и даже зазоров между отдельными фрагментами NURBS-поверхностей. В результате этой особенности конструирования практически никогда не удается получить монолитный объект. Чтобы избежать упомянутой выше проблемы, приходится очень тщательно сшивать отдельные фрагменты между собой.
Использование NURBS-кривых также приводит к усложнению модели. Наличие большого числа кривых, определяющих поверхность, может заметно усложнить ее редактирование. Кроме того, иногда такие модели оказываются настолько массивными, что с ними невозможно работать в интерактивном режиме. Конечно, в данном случае все зависит от мощности SD-ускорителя компьютера! Другим недостатком использования NURBS-кривых является увеличение времени визуализации. Идеальная математическая кривая, определяющая форму поверхности, должна быть конкретизирована с помощью полигонов, наличие большого количества которых замедляет визуализацию.
В этой главе будет рассмотрен процесс моделирования домика на основе NURBS-кривых. Дом является первым объектом сцены, которую вам предстоит создать в процессе работы над упражнениями нашей книги.
Пример пользовательского контекстного меню
Рисунок 5.1. Пример пользовательского контекстного меню

При выполнении как упражнений этой главы, так и остальных упражнений, имеющихся в данной книге, можно воспользоваться набором контекстных меню, адаптированных под стоящие перед вам задачи. Кроме того, такие меню можно использовать в качестве отправной точки для создания своих собственных наборов команд. Также увеличить эффективность работы с Maya можно путем изучения имеющихся клавиатурных комбинаций и создания своих собственных. Мы познакомим вас с рядом клавиатурных комбинаций, используемых в дополнение к тем, которые вы применяете при работе с контекстными меню. Посмотрим на процесс их загрузки.
Привязка нижних ребер объекта RoofTiles
Рисунок 5.7. Привязка нижних ребер объекта RoofTiles
Повторите процесс, описанный в шагах с восьмого по одиннадцатый, для объекта RoofSlab. В результате должен получиться объект, показанный на Рисунок 5.8. Нажмите клавишу F8 для выхода из режима редактирования подобъектов.
Результат перемещения профиля крыльца на нужное место
Рисунок 5.15. Результат перемещения профиля крыльца на нужное место
Существует несколько способов создания поверхности на основе кривой. В этом упражнении вам предстоит познакомиться с методом выдавливания. Одновременно нажмите комбинацию клавиш Ctrl+Alt+z и левую кнопку мыши и щелкните на квадратике, расположенном справа от команды Extrude (Выдавить). Убедитесь, что переключатель Style (Метод) стоит в положении Distance (Расстояние). В этом случае не требуется вторая кривая, вдоль которой будет происходить выдавливание профиля. Переключатель Direction (Направление) установите в положение Specify (Указать), что позволит вам самостоятельно указать направление выдавливания с помощью расположенного ниже переключателя Direction Vector (Вектор направления). Установите его в положение Free (Свободный). Это даст возможность вручную ввести координаты вектора, определяющего направление. В расположенные ниже текстовые поля введите значения (0, 0, -1). Переключатель Surface Degree (Кривизна поверхности) оставьте в положении Linear (Линейная). В результате формирование поверхности методом выдавливания будет происходить в отрицательном направлении оси Т..
Теперь осталось указать только значение параметра Extrude Length (Длина выдавливания). Полученная в результате выдавливания поверхность должна заканчиваться в шести дюймах от противоположного угла объекта OuterWall. Изме- рить требуемое расстояние можно разными способами, но в этом упражнении будет использоваться инструмент Distance (Рулетка). На время сверните окно диалога Extrude Options (Параметры выдавливания) и выберите в меню оперативного доступа команду Create > Measure Tools > Distance (Создать > Инструменты измерения > Рулетка). Нажмите и удерживайте клавишу х для временной активизации режима привязки к узлам сетки и щелкните в точке пересечения кривой профиля крыльца с наружной стеной дома. Теперь увеличьте масштаб противоположного угла дома, в шести дюймах от которого должно заканчиваться крыльцо, еще раз включите режим привязки к узлам сетки и щелкните в шести дюймах от края дома. Если теперь уменьшить масштаб таким образом, чтобы в окне проекции была видна вся стена дома, вы обнаружите, что в центре созданной вами линии написана ее длина. В данном случае она составляет 188 дюймов. Теперь, когда требуемое значение параметра известно, инструмент измерения вам больше не нужен. Выделите его и нажмите клавишу Backspace. Откройте окно диалога Outliner (Структура), взгляните на список объектов сцены и, если обнаружите точки, использовавшиеся для фиксации расстояния (их имена начинаются со слова locator), удалите их.
Нажмите клавишу q для выхода из режима измерения расстояний. Выделите объект porchProfile и разверните окно диалога Extrude Options (Параметры выдавливания). Введите полученное значение длины крыльца в поле Extrude Length (Протяженность выдавливания) и нажмите кнопку Extrude (Выдавить). Полученному объекту присвойте имя PorchFloor и с помощью команды меню оперативного доступа Modify > Center Pivot (Изменить > Центрировать опорную точку) переместите опорную точку в геометрический центр объекта.
Создайте новый слой с именем PorchL и поместите в него объект PorchFloor.
Сохраните сцену.
Сделайте видимыми все слои, чтобы посмотреть на полученную конструкцию. Для проверки геометрии объекта можно провести несколько тестовых визуализаций.
Примечание
ПРИМЕЧАНИЕ
Попробуйте самостоятельно создать сцену с нуля, используя для моделирования объектов методы Loft (Лофтинг) и Extrude (Выдавливание). В упражнениях этой главы переключатели, отвечающие за кривизну, устанавливались в положение Linear (Линейный), тем самым провоцируя создание плоских поверхностей. Посмотрите, как отражается на состоянии поверхностей установка этого переключателя в положение Cubic (Третьей степени).
Первая стена будущего
СОВЕТ
Помните, что клавиша g служит для повторного выполнения последней использовавшейся команды. Кроме того, выбрав в меню оперативного доступа команду Recent Commands (Последние команды), вы получите список из нескольких последних команд.
Процесс создания внешней стены дома будет завершен после объединения четырех поверхностей в одну группу. Чтобы избежать случайного выделения кривых, на основе которых сформированы поверхности, воспользуйтесь окном диалога Outliner (Структура), которое вызывается выбором в меню оперативного доступа команды Window > Outliner (Окно > Структура) или нажатием комбинации клавиш Shift+0. Затем выберите команду Edit > Group (Правка > Группировка). Полученной группе присвойте имя OuterWall.
Создайте еще один слой, назвав его OuterWallsL Выделите группу OuterWall и, щелкнув правой кнопкой мыши на имени слоя, выберите в появившемся меню команду Add Selected Objects (Добавить выделенные объекты). Скройте этот слой, чтобы облегчить процесс выделения кривых.
Первая стена будущего
Рисунок 5.11. Стены и фундамент на данный момент установлены должным образом, но остались треугольные просветы между стенами и крышей

Примечание
Благодаря наличию истории построения объекта можно изменить форму поверхности, отредактировав лежащие в основе этой поверхности кривые. Ведь они до сих пор присутствуют в сцене и связаны с поверхностью. Попробуйте проделать вышеуказанную операцию с различными объектами. Потом их можно легко вернуть в исходное состояние нажатием клавиши r. Можно получить весьма впечатляющие результаты и открыть для себя многообразие приемов моделирования и анимации на основе NURBS-кривых.
Упражнение. Заполнение просветов и создание внутренней стены
Выделите первую из кривых leftnurbsSquarel, которая использовалась для создания поверхности Wallside_l. Это будет намного проще сделать, скрыв на время слой OuterWallsL. Введите в поле Translate Y (Смещение по оси Y) окна каналов значение 80. Хотя поверхность Waltside_l и не была выделена, в результате она будет продолжена до нового положения кривой. Это связано с наличием истории создания объекта.
Теперь стена проходит сквозь крышу, что дает возможность создания кривой на месте пересечения двух поверхностей, как показано на Рисунок 5.12. Затем можно просто отрезать лишний фрагмент. Получив такую кривую на пересечении объекта Wallside_l с крышей, вы точно укажете точки, в которых стена прорезает крышу. Выделите объект Wallside_l и затем, нажав клавишу Shift, щелкните на нижней поверхности объекта RoofSlab. Одновременно нажмите комбинацию клавиш Alt+z и левую кнопку мыши. В появившемся контекстном меню щелкните на квадратике, расположенном справа от команды Intersect Surfaces (Пересечь поверхности). Установите переключатель Create Curve For (Создать кривую для) в положение First Surface (Первой поверхности) и нажмите кнопку Intersect (Пересечение). Затем выполните эту операцию для симметричной стороны здания.
Выделите объект Wallside_l. Одновременно нажмите комбинацию клавиш Alt+z и левую кнопку мыши. В появившемся контекстном меню выберите команду Trim Toot (Подрезка). Результатом применения данного инструмента к поверхности будет появление белой сетки. Щелкните в точке той области поверхности, которую требуется сохранить, и нажмите клавишу Enter. Выступающие над крышей края исчезнут. Повторите эту операцию для стены, расположенной с другой стороны дома.
После выполнения всех вышеописанных действий вам не составит труда добавить внутренние стены. Создайте NURBS-примитив Cube (Куб), выбрав в контекстном меню, вызываемом с помощью комбинации клавиш Ctrl+z, команду Cube (Куб), и присвойте ему имя InnerWalls. В поля Translate Y (Смещение по оси Y), Scale X ( Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) окна каналов введите значения -89, 132, 112 и 192,5 соответственно. Верхняя грань полученного объекта должна располагаться на линии стыка внешних стен с крышей.
В результате перемещения
ПРИМЕЧАНИЕ
Благодаря наличию истории построения объекта можно изменить форму поверхности, отредактировав лежащие в основе этой поверхности кривые. Ведь они до сих пор присутствуют в сцене и связаны с поверхностью. Попробуйте проделать вышеуказанную операцию с различными объектами. Потом их можно легко вернуть в исходное состояние нажатием клавиши r. Можно получить весьма впечатляющие результаты и открыть для себя многообразие приемов моделирования и анимации на основе NURBS-кривых.
Упражнение. Заполнение просветов и создание внутренней стены
Выделите первую из кривых leftnurbsSquarel, которая использовалась для создания поверхности Wallside_l. Это будет намного проще сделать, скрыв на время слой OuterWallsL. Введите в поле Translate Y (Смещение по оси Y) окна каналов значение 80. Хотя поверхность Waltside_l и не была выделена, в результате она будет продолжена до нового положения кривой. Это связано с наличием истории создания объекта.
Теперь стена проходит сквозь крышу, что дает возможность создания кривой на месте пересечения двух поверхностей, как показано на Рисунок 5.12. Затем можно просто отрезать лишний фрагмент. Получив такую кривую на пересечении объекта Wallside_l с крышей, вы точно укажете точки, в которых стена прорезает крышу. Выделите объект Wallside_l и затем, нажав клавишу Shift, щелкните на нижней поверхности объекта RoofSlab. Одновременно нажмите комбинацию клавиш Alt+z и левую кнопку мыши. В появившемся контекстном меню щелкните на квадратике, расположенном справа от команды Intersect Surfaces (Пересечь поверхности). Установите переключатель Create Curve For (Создать кривую для) в положение First Surface (Первой поверхности) и нажмите кнопку Intersect (Пересечение). Затем выполните эту операцию для симметричной стороны здания.
Выделите объект Wallside_l. Одновременно нажмите комбинацию клавиш Alt+z и левую кнопку мыши. В появившемся контекстном меню выберите команду Trim Toot (Подрезка). Результатом применения данного инструмента к поверхности будет появление белой сетки. Щелкните в точке той области поверхности, которую требуется сохранить, и нажмите клавишу Enter. Выступающие над крышей края исчезнут. Повторите эту операцию для стены, расположенной с другой стороны дома.
После выполнения всех вышеописанных действий вам не составит труда добавить внутренние стены. Создайте NURBS-примитив Cube (Куб), выбрав в контекстном меню, вызываемом с помощью комбинации клавиш Ctrl+z, команду Cube (Куб), и присвойте ему имя InnerWalls. В поля Translate Y (Смещение по оси Y), Scale X ( Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) окна каналов введите значения -89, 132, 112 и 192,5 соответственно. Верхняя грань полученного объекта должна располагаться на линии стыка внешних стен с крышей.
В результате перемещения
Рисунок 5.13. Процесс добавления объекта в слой после его выделения в окне диалога Outliner
Сохраните сцену, выбрав в меню оперативного доступа команду File > Save Scene (Файл > Сохранить сцену).
Результат дублирования
Рисунок 5.3. Результат масштабирования и перемещения объекта RoofSlab 
Примечание
ПРИМЕЧАНИЕ
Контекстные меню преобразований полезны в случаях, когда нужно ограничить преобразование одной из осей. Нажмите и удерживайте клавишу, активизирующую инструмент нужного преобразования, и левую кнопку мыши. В результате появится одно из меню, выбрав в котором подходящий вариант вы ограничите преобразование одной осью или плоскостью. Затем, используя среднюю кнопку мыши, можно осуществить преобразование.
Уменьшите масштаб изображения таким образом, чтобы появилась возможность выделить оба присутствующих в сцене объекта одной рамкой. Затем нажмите клавишу Т, чтобы перейти от выделения граней к выделению объектов целиком. В меню оперативного доступа выберите команду Edit (Правка) и щелкните на квадратике, расположенном справа от названия команды Group (Группировать). В окне диалога Group Options (Параметры группировки) установите переключатель Group Under (Группировка) в положение World (Глобальная). В этом случае группа окажется на верхнем уровне иерархии. Если оставить этот переключатель в положении Parent (Под предком), группа окажется подчиненной ближайшему общему предку входящих в нее объектов. В данном случае это приведет к потере группировки объектов Shingles и RoofSlab. В окне каналов присвойте новой группе имя RoofSide.
Поверните группу, изменив в окне каналов значение параметра Rotate X (Поворот относительно оси X) на 35.
Займемся созданием второй стороны крыши. Для этого достаточно продублировать уже имеющийся объект и изменить его ориентацию. Убедитесь, что объект RoofSide выделен, и откройте окно диалога Duplicate Options (Параметры дублирования). Напомним, что для этого нужно выбрать в меню оперативного доступа команду Edit (Правка) и щелкнуть на квадратике, расположенном справа от названия команды Duplicate (Дублировать). Восстановите заданные по умолчанию настройки с помощью команды Reset Settings (Сбросить настройки) меню Edit (Правка) окна диалога. Введите в поля Translate Z (Смещение по оси Z), Scale 2 (Масштабирование по оси Z) и Rotate X (Поворот относительно оси X) значения -109,3, -1 и -70 соответственно. Вторая сторона крыши готова! Нажмите комбинацию клавиш Shift+a, чтобы целиком уместить все объекты в границах окон проекции. Нарисуйте выделяющую рамку вокруг обеих половин крыши и два раза нажмите клавишу Т, а затем выберите в меню оперативного доступа команду Edit ь Group (Правка > Группировать). Присвойте новой группе имя Roof.
Примечание
ПРИМЕЧАНИЕ
Выбирать команду Reset Settings (Сбросить настройки) в меню Edit (Правка) окна диалога с параметрами команды или инструмента рекомендуется каждый раз перед вводом новых параметров.
Переместите центр группы Roof в начало системы координат для удобства дальнейшего процесса моделирования. Активизируйте инструмент Move (Переместить), нажав клавишу w. Перейдите в окно проекции Side (Вид сбоку), затем нажмите и удерживайте клавишу х, чтобы активизировать режим привязки к сетке. О переходе в этот режим свидетельствует изменение формы значка преобразования перемещения с квадрата на круг. Убедитесь, что группа Roof выделена, щелкните на центре значка преобразования и перетащите указатель мыши в место пересечения толстых черных линий сетки, как показано на Рисунок 5.4. Благодаря режиму привязки центр группы переместится точно в начало координат.
Создание крыши
Создание крыши
Для создания крыши будут использованы два>ШКВ5-примитива — Cube (Куб) и Plane (Плоскость). Как вы, вероятно, помните, куб состоит из шести плоскостей, соединенных в одну группу. В результате щелчок на нем приводит к выделению только одной его грани, а не всего объекта. Чтобы выделить объект целиком, нажмите клавишу
^.
Создание старого дома
Создание старого дома
Итак, все готово для начала работы над созданием «Мира монстров». Прежде всего вам предстоит на основе простых NURBS-объектов смоделировать дом, в котором будет жить монстр. По мере добавления все новых и новых деталей дом будет становиться все сложнее. Мы не собираемся приводить исчерпывающий список всех инструментов Maya с объяснением возможных вариантов их использования. Для этого существует руководство пользователя. Но назначение основных инструментов станет понятным в процессе обучения работе с программой.
Теперь все управляющие точки выровнены по вертикали
Рисунок 5.8. Теперь все управляющие точки выровнены по вертикали
Если в данный момент на экране отсутствует окно каналов, вызовите его, нажав комбинацию клавиш Shift+C. Сделайте видимым редактор слоев и, выбрав в меню Layers (Слои) команду Create Layer (Создать слой), создайте новый слой. Дважды щелкните на его имени. Появится окно диалога Edit Layer (Правка слоя). Присвойте слою имя RoofL и назначьте ему коричневый цвет. Выделите объект Roof и, щелкнув правой кнопкой мыши на имени слоя, выберите в появившемся меню команду Add Selected Objects (Добавить выделенные объекты). Скрыть и снова сделать видимым содержимое слоя можно посредством щелчка на первом слева квадратике, расположенном рядом с именем слоя.
Выберите в меню оперативного доступа команду File > Save Scene As (Файл > Сохранить сцену как) и сохраните сцену под именем chOSoldHouse.mb. Обратите внимание, что для сохранения автоматически предлагается папка M4F_SW\ Oldhouse\Scenes. Помните, что существует возможность включения функции сохранения с возрастающими именами. Достаточно выбрать в меню оперативного доступа команду File (Файл), щелкнуть на квадратике, расположенном справа от названия команды Save Scene (Сохранить сцену), и установить в появившемся окне диалога флажок Incremental Save (Сохранение с возрастающими именами). В этом случае вы можете быть уверены в наличии достаточного количества резервных копий файла, которые можно загрузить в случае возникновения проблем с текущей сценой.
Создание кровельного
Упражнение. Создание кровельного материала
Для начала нужно создать NURBS-примитив Cube (Куб). Это можно сделать с помощью меню оперативного доступа, но в данном случае наша цель — научить вас работать с новыми контекстными меню. Одновременно нажмите комбинацию клавиш Ctrl+z и левую кнопку мыши. Перетащите указатель влево и отпустите кнопку мыши, чтобы создать куб.
Нажмите комбинацию клавиш Shift+C, чтобы сделать видимым окно каналов, в котором можно будет изменить параметры куба. В текстовое поле Name (Имя) введите имя RoofTile. А в поля Scale X (Масштабирование по оси X), Scale Z (Масштабирование по оси Z) и Rotate X (Поворот относительно оси X) введите значения 150, 12 и -6 соответственно. В итоге получится длинная плоская доска, повернутая под небольшим углом, которую вам предстоит использовать в качестве исходной единицы кровельного материала.
Теперь нужно создать много таких досок, чтобы покрыть ими крышу. Выберите в меню оперативного доступа команду Edit (Правка) и щелкните на квадратике, расположенном справа от названия команды Duplicate (Дублировать). В меню Edit (Правка) окна диалога Duplicate Options (Параметры дублирования) выберите команду Reset Settings (Сбросить настройки). Если ранее дубликаты уже создавались, выполнение этой команды приведет к сбросу предыдущих настроек и восстановлению заданных по умолчанию значений.
В крайнее справа поле Translate (Перемещение) введите значение 8, чтобы каждая следующая копия была сдвинута относительно предыдущей на 8 дюймов вдоль оси Z. В поле Number of Copies (Число копий) введите значение 15. Значения остальных параметров оставьте без изменений и нажмите кнопку Duplicate (Дублировать). В результате должны появиться 15 досок, сдвинутых друг относительно друга, как показано на Рисунок 5.2.
Создание крыльца
Упражнение. Создание крыльца
Займемся созданием крыльца в передней части дома.
Скройте слой RoofL, так как в данном упражнении он не понадобится. Нажмите клавишу Пробел для перехода к четырехоконной конфигурации, затем поместите указатель мыши в пространство окна проекции Front (Вид спереди) и снова нажмите клавишу Пробел.
Если координатная сетка в данный момент скрыта, сделайте ее видимой, выбрав в меню оперативного доступа команду Display t Grid (Отображение > Сетка).
Увеличьте масштаб правого нижнего угла дома таким образом, чтобы сделать ячейки сетки легко различимыми.
Для создания досок крыльца вам предстоит воспользоваться инструментом ЕР Curve (Узловые точки кривой). Одновременно нажмите комбинацию клавиш Ctrl+c и левую кнопку мыши. В появившемся контекстном меню щелкните на квадратике, расположенном справа от команды ЕР Curve (Узловые точки кривой). Убедитесь, что переключатель Curve Degree (Порядок кривой) стоит в положении 1 Linear (Линейная) и нажмите кнопку Close (Закрыть).
Каждая ячейка сетки имеет ширину один дюйм. Нужно создать крыльцо шириной примерно шесть футов. Используя режим привязки к узлам сетки (для его включения нажмите и удерживайте клавишу х), посредством щелчков создавайте точки кривой, которая представляет профиль крыльца, лежащего на земле. Для начала нажмите клавишу х и щелкните и точке, расположенной двумя дюймами выше и двумя дюймами правее нижнего правого угла внутренней стены. Это будет составлять 16 дюймов над фундаментом дома. Следующую точку расположите четырьмя дюймами правее, затем опуститесь на два дюйма ниже, перейдите на один дюйм правее и снова вернитесь на два дюйма вверх. В результате будет сформирован желобок шириной один дюйм и глубиной два дюйма. Повторите эту операцию 14 раз, чтобы создать кривую, подобную показанной на Рисунок 5.14.
Создание стен и фундамента
Упражнение. Создание стен и фундамента
Начнем с создания стен дома.
Если слой RoofL является видимым, скройте его. Одновременно нажмите клавиши Ctrl+z и левую кнопку мыши, затем выберите в появившемся контекстном меню вариант Square (Квадрат). Присвойте объекту nurbsSquarel имя OuterWallcurvel. Этот квадрат получен путем группировки четырех кривых.
Сформируем на основе квадрата нижний край фундамента дома. В поля Scale X (Масштабирование по оси X), Scale Z (Масштабирование по оси Z) и Translate Y (Смещение по оси Y) окна каналов введите значения 140, 200 и -159 соответственно. Если теперь сделать видимым слой RoofL и посмотреть на вид в окне проекции Тор (Вид сверху), вы увидите, что полученный прямоугольник располагается точно под крышей дома.
Примечание
Если при каркасном отображении NURBS-объектов включен режим минимальной детализации, рассмотреть выделенный объект иногда бывает не так-то легко. Помните, что вы всегда можете изменить уровень детализации, нажимая клавиши 1, 2 и 3.
Сформируем контур стен, продублировав квадрат. Впоследствии на основе этих двух кривых можно получить поверхность стен, соединив их друг с другом методом лофтинга. Убедитесь, что у вас выделен объект OuterWallcurvel и выберите в меню оперативного доступа команду Edit > Duplicate with Transform (Правка > Дублирование с преобразованием). Это приведет к появлению дубликата непосредственно поверх исходного объекта. В окне каналов введите в поле Translate Y (Смещение по оси Y) значение -111.
Не снимая выделения с объекта QuterWallcurveZ, снова выполните команду Duplicate with Transform (Дублирование с преобразованием). Для этого дубликата сделайте значение параметра Translate Y (Смещение по оси Y) равным -107, а в поля Scale X (Масштабирование по оси X) и Scale Z (Масштабирование по оси Z) введите значения 136 и 196 соответственно. Еще два раза выполните дублирование с преобразованием, вводя в поле Translate Y (Смещение по оси Y) числа -105 и -33 соответственно. В итоге требуется получить пять прямоугольников, как показано на Рисунок 5.9.
Теперь пришло время применить метод лофтинга. Щелкните на ближайшей к вам стороне объекта OuterWallcurveS. В окне каналов посмотрите на имя выделенной кривой. Это должна быть кривая leftnurbsSquarel. Нажмите клавишу Shift и щелчком выделите сторону прямоугольника OuterWaltcurve4, расположенную непосредственно под кривой leftnurbsSquarel. Одновременно нажмите комбинацию клавиш Ctrl+Alt+z и левую кнопку мыши. В появившемся контекстном меню щелкните на квадратике, расположенном справа от команды Loft (Лофтинг). В появившемся окне диалога Loft Options (Параметры лофтинга) прежде всего выберите команду Reset Settings (Сбросить настройки) меню Edit (Правка), затем установите переключатель Surface Degree (Кривизна поверхности) в положение Linear (Линейная) и нажмите кнопку Loft (Создать Loft-поверхность). Появится первая стена, вид которой показан на Рисунок 5.10. Присвойте ей имя WallSide_l. Для перехода в режим показа тонированных оболочек объектов нажмите клавишу 5.
Установка предварительно заданных
h2>Меню оперативного доступа и клавиатурные комбинации. Вы сможете повысить эффективность работы с помощью меню оперативного доступа, клавиатурных комбинаций и контекстных меню.
Начальные сведения о моделировании на основе NURBS-объектов. Мы покажем, как на основе объектов-примитивов можно создать модели трехмерных объектов, а также продемонстрируем приемы управления частями этих объектов.
Выбор техники моделирования. Вам предстоит познакомиться с сильными и слабыми сторонами различных методик моделирования.
Применение знаний и умений. Шаг за шагом мы покажем вам, как с помощью уже известных вам методик и приемов создать модель дома.
В этой главе вы получите начальные сведения о моделировании на основе NURBS-кривых в Maya и узнаете о методах работы с различными типами объектов. Понимание принципов моделирования облегчает процесс создания объектов и делает его более эффективным. Maya предлагает такое множество разнообразных функций и инструментов для работы в этой области, что вам не придется скучать!
Ключевые термины
Узел (Node). Базовый элемент сцены, хранящий информацию об атрибутах объекта, то есть о наборе переменных, определяющих его свойства. Атрибуты узла могут быть связаны с другими узлами, образуя целую сеть. При работе в Maya вам постоянно придется создавать новые узлы, связывать их друг с другом, оценивать и удалять ненужные. Неоднородный рациональный В-сплайн (NURBS). Тип сплайна, имеющего управляющие точки, расположенные на кривой сплайна или за ее пределами. Кривые сплайнов данного типа могут применяться для формирования поверхностей, также определяемых управляющими точками.
Сплайн (Spline). Линия, кривизна которой определяется управляющими точками.
Направление поверхности (Surface direction). NURBS-поверхность всегда имеет наружную и внутреннюю стороны, что дает возможность говорить о направлении поверхности, определяемом координатами U и V. Кривые также имеют направление. Ошибка в его выборе может стать причиной проблем.
Нормаль (Normal). Вектор, направленный перпендикулярно поверхности. Объекты создаются на основе поверхностей, которые представляют собой бесконечно тонкие листы, одна сторона которых определена как наружная, а другая — как внутренняя. Наружной считается сторона, из которой исходит вектор нормали.
Случайное нажатие комбинации
ВНИМАНИЕ
Случайное нажатие комбинации клавиш Alt+v спровоцирует воспроизведение анимации, что может стать источником проблем. Так как ползунок таймера анимации в данном упражнении скрыт, а ключи анимации для какого-либо объекта пока не созданы, вы даже не заметите, что перешли в режим воспроизведения анимации, в котором невозможно создание и редактирование большинства объектов. Сделать видимым ползунок таймера анимации можно, выбрав в меню оперативного доступа команду Display > UI Elevemts > Time Slider (Отображение > Элементы интерфейса > Ползунок таймера анимации) или нажав комбинацию клавиш Alt+t. Чтобы остановить воспроизведение анимации, если оно все же началось, повторно нажмите Alt+v или воспользуйтесь клавишей Esc. Перепрограммировать заданную по умолчанию комбинацию клавиш можно в окне диалога Hotkey Editor (Редактор клавиатурных комбинаций), которое вызывается командой Windows > Settings/Preferences > Hotkeys (Окно > Настройки/Параметры > Клавиатурные комбинации). В разделе Assign New Hotkey (Назначить новую клавиатурную комбинацию) введите v в поле Key (Клавиша), установите переключатель Modifier (Модификатор) в положение Alt и нажмите кнопку Find (Найти). Теперь можно легко назначить найденной команде новую клавиатурную комбинацию. Впрочем, подобными вещами лучше не увлекаться, потому что если впоследствии вам придется, например, переустановить программу, все значения клавиатурных комбинаций вернутся к заданным по умолчанию, и вы просто не сможете сними работать, потому что привыкли к своим собственным!
Свое знакомство с NURBS-объектами вы начнете с построения дома, в процессе которого будут использоваться меню оперативного доступа, клавиатурные комбинации и контекстные меню. Работа над сценой продолжится в следующих главах, и к концу книги вы получите детально разработанную сцену, визуализация которой приведет к появлению впечатляющей анимации.
Временное включение режима привязки
Рисунок 5.4. Временное включение режима привязки помогает поместить центр группы Roof точно в начало координат
В окне проекции Side (Вид сбоку) увеличьте масштаб области схождения обоих скатов крыши. Для этого нужно нажать комбинацию клавиш Ctrl+Alt, одновременно рисуя выделяющую рамку вокруг этой области. В результате окажется, что скаты крыши не стыкуются достаточно точно, как показано на Рисунок 5.5. Решить эту проблему можно путем перемещения вершин объекта Shingles при включенном режиме привязки к сетке.
Временное включение режима привязки
Повторите шаг номер 9 для симметрично расположенных управляющих точек.
Теперь переместим к центральной линии управляющие точки, расположенные ниже. Осуществите их привязку к узлу сетки, расположенному ниже использовавшегося в шагах номер 9 и 10, как показано на Рисунок 5.7.
Продвинутая 3D графика в пакете Maya
Две линии созданные на внешней
Рисунок 6.13. Две линии, созданные на внешней и внутренней стенах с помощью операции пересечения
Выделите внешнюю заднюю стену и примените к ней операцию подрезки. В контекстном меню, вызываемом комбинацией клавиш Alt+z, выберите команду Trim Tool (Подрезка). Если в результате не появится белая сетка, щелкните на поверхности дальней стены. Эта сетка определяет области, которые будут вырезаны. При этом область расположения трубы ограничена жирными белыми линиями.
ПРИМЕЧАНИЕ Инструмент Trim Tool (Подрезка) позволяет выделить поверхности, которые требуется сохранить, а после нажатия клавиши Enter удаляет области, оставшиеся невыделенными. Для работы с этим инструментом нужны кривые, делящие поверхность на совокупность отдельных частей.
Щелчком выделите стену, расположенную слева от трубы. Появится желтый ромбик, отмечающий, что область, которую вы собираетесь сохранить, выделена. Щелчок на поверхности стены, расположенной справа от трубы, приведет к появлению второго ромбика. При этом первый ромбик изменит цвет на синий. Нажмите клавишу Enter для удаления центральной части плоскости, которая осталась невыделенной. Теперь аналогичную операцию нужно проделать с внутренней стеной, чтобы освободить пространство для каминного отверстия. Крыша и пол дома также прорезаются трубой, но эти места в готовой модели не будут видны.
Теперь нужно избавиться от части фундамента, которая также пересекается с трубой. Выделите дальнюю стену фундамента и одну из поверхностей трубы и сформируйте линию на месте их пересечения. Потом проделайте то же самое с другой стороной трубы.
Используйте инструмент Trim Tool (Подрезка) для удаления лишней части фундамента. Выделите две боковые стороны поверхности фундамента, и нажмите клавишу Enter для удаления центральной части.
Сохраните сцену под именем ch06tut05a.mb. Создание набора резервных копий файла дает возможность при необходимости вернуться к редактированию произвольного этапа сцены.
Контекстное меню с помощью которого
Рисунок 6.17. Контекстное меню, с помощью которого была создана плоская поверхность между основанием цилиндра и нижним краем кромки
На этом моделирование трубы закончено. Нажмите клавишу а, чтобы все объекты сцены поместились в границах активного окна проекции, и выделите рамкой всю трубу. Нажмите клавишу Т, чтобы выделить весь объект, и выберите в меню оперативного доступа команду Edit > Delete by Type > History (Правка > Удалить все объекты типа > История). Поместите выделенные объекты в слой ChimneyL. Откройте окно диалога Outliner (Структура), выделите имена объектов, созданных вами в этом упражнении, и, нажав среднюю кнопку мыши, перетащите их на строчку Chimney.
Сохраните сцену, нажав комбинацию клавиш Ctrl+s.
Примечание
ПРИМЕЧАНИЕ
Если вы хотите самостоятельно поэкспериментировать с инструментами, информацию о которых вы получили в этой главе, попытайтесь добавить дополнительные элементы, например создать отделку для стен. Удивительно, как самые простые детали могут значительно усложнить сцену.
NURBSмоделирование
NURBS-моделирование
В предыдущей главе моделирование объектов начиналось с создания NURBS-примитивов. Вам пришлось редактировать эти примитивы, проецировать кривые на поверхность и создавать поверхность на основе кривой. В этой главе вы освоите дополнительные приемы моделирования поверхностей, а именно вращение образующей, выдавливание сечения вдоль некоторой кривой, изменение положения управляющих и узловых точек. В результате можно будет говорить о том, что вы владеете базовым инструментарием NURBS-моделирования.
Подведем итоги
Подведем итоги
Подробно рассмотрев различные стадии создания дома, вы познакомились с набором достаточно сложных операций. Мы продемонстрировали различные приемы моделирования, от редактирования NURBS-примитивов до получения поверхностей на основе кривых. При этом вы получили представление о редактировании параметров различных инструментов и поэкспериментировали с созданием и редактированием NURBS-поверхностей. В этой главе была дана информация по следующим темам:
Привязки к кривым. Возможность заставить объект перемещаться вдоль
произвольной кривой.
Проецирование кривых и подрезка. Проецируя кривую на поверхность, вы получаете возможность обрезать часть поверхности, расположенную с любой стороны этой кривой.
Перестройка поверхностей. Если для редактирования поверхности нужна дополнительная детализация, можно перестроить эту поверхность, увеличив число разбиений на фрагменты.
Создание поверхностей вращением профиля. Построив кривую-профиль
объекта и повернув ее вокруг определенной оси, вы получите поверхность.
Соединение поверхностей. Получение единой поверхности из отдельных
фрагментов, ребра которых совпадают.
Лофтинг изопараметрических кривых. Любое ребро существующей поверхности может использоваться в качестве основы для нового объекта.
Соединение форм плоской поверхностью. Если одна кривая является контуром другой и при этом обе они лежат в одной плоскости, имеется возможность легко создать между ними плоскую поверхность. Этот метод идеально подходит для удаления дырок.
Редактирование кривых, на основе которых была построена поверхность. Если у вас фиксируется история создания объекта, редактирование формы кривой меняет вид объекта, созданного на ее основе.
В самых первых версиях программы Maya использовалось в основном NURBS-моделирование, которое наилучшим образом подходит для создания множества объектов, благодаря простоте отображения поверхностей и изменения уровня детализации. Однако в некоторых случаях лучше использовать моделирование на основе полигонов. Именно с этим методом вам предстоит познакомиться в следующей главе.
Поверхность полученная вращением профиля NUKbbмоделирование
Рисунок 6.3. Поверхность, полученная вращением профиля NUKbb-моделирование
В окне проекции Front (Вид спереди) выделите кривую-профиль и, щелкнув на ней правой кнопкой мыши, выберите в появившемся контекстном меню команду Control Vertex (Управляющие точки). Упомянутые подобъекты окажутся выделенными фиолетовым цветом. Их перемещение приводит к изменению формы тела вращения. Постарайтесь получить объект. Для облегчения задачи в данном случае имеет смысл сделать выделяемыми в окне проекции только управляющие точки. Если в данный момент строка состояния скрыта, сделайте ее видимой, выбрав в меню оперативного доступа команду Display > UI Elements >Status Line (Отображение > Элементы интерфейса > Строка состояния). Нажмите клавишу F8 для перехода в режим редактирования подобъектов и убедитесь, что из кнопок строки состояния, предназначенных для формирования маски выделения, нажата только крайняя левая. После завершения редактирования формы объекта выйдите из режима редактирования подобъектов и выберите в меню оперативного доступа команду Edit > Delete by Type > History (Правка > Удалить все объекты типа > История), чтобы зафиксировать форму объекта. Откройте окно диалога Outliner (Структура) и удалите кривую-профиль. Она больше не нужна, потому что вы разрушили связь этой кривой с объектом, созданным на ее основе.
Присвойте полученному объекту имя Porch Pole и сохраните сцену под именем ch06tut01a.mb.
Теперь нужно поместить балясину на крыльцо. Сделайте видимыми слои OuterWallL и PorchL и разверните окно проекции Front (Вид спереди) на весь экран. Нажмите клавишу w, активизируя инструмент Move (Переместить), а затем нажмите и удерживайте клавишу х. Разместите балясину на расстоянии один дюйм над поверхностью крыльца.
Изменим размер балясины таким образом, чтобы ее высота стала равной четырем футам. Высота ячеек сетки равна одному дюйму, так что можно просто отсчитать нужное количество ячеек и вручную изменить масштаб, но есть более простой способ. Инструмент Distance (Рулетка) служит для измерения расстояний между двумя точками сцены. Чтобы использовать его, выберите в меню оперативного доступа команду Create > Measure Toots > Distance (Создать > Инструменты измерения > Рулетка). Затем щелкните поочередно в двух местах окна проекции Front (Вид спереди). Если объект не появился, выберите в меню окна проекции команду Show > Dimensions (Показать t Инструменты измерения). Активизируйте инструмент Move (Переместить), нажмите клавишу х и перетащите первую точку рулетки, поместив ее на высоте один дюйм над поверхностью крыльца. Вторую точку рулетки разместите непосредственно над первой на высоте 48 дюймов. Это даст вам наглядное представление о том, насколько нужно изменить высоту балясины.
Теперь можно легко придать балясине нужную высоту. Переключитесь в режим масштабирования, нажав клавишу г. Щелкните на точке схода управляющих векторов и перетащите указатель мыши, чтобы изменить масштаб объекта по всем осям одновременно. Обратите внимание на значения переменных Scale (Масштаб) в окне каналов. Если это не так, вручную введите в поля Scale X (Масштабирование по оси X ) и Scale Z (Масштабирование по оси Z) значение, которое приняла переменная поля Scale Y (Масштабирование по оси Y). После окончания масштабирования балясины удалите все части инструмента Distance (Рулетка). В окне диалога Outliner (Структура) они называются locatorl, Iocator2 и distanceDimentionl.
На данный момент объект Porch Floor выглядит, как гофрированная плоскость, висящая в воздухе. Придадим крыльцу более естественный вид, обшив его с трех сторон досками. В контекстном меню, вызываемом с помощью комбинации клавиш Ctrl+z, выберите команду Cube (Куб) и присвойте полученному объекту название PorchPanel.
Заготовка для первой облицовочной доски готова, теперь нужно придать ей нужный размер. В окне каналов введите в поля Scale X (Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) значения 68, 4 и 2 соответственно.
Переместите куб в положительном направлении оси Z, отслеживая его положение в окне проекции Тор (Вид сверху). В результате он должен оказаться на краю объекта Porch Floor. В процессе перемещения используйте режим привязки к узлам сетки.
Совет
СОВЕТ
Иногда бывает полезно использовать другие варианты компоновки окон проекции. В Maya имеется набор заранее заданных компоновок. Переключиться в двухоконный режим, можно с помощью команды меню оперативного доступа Panels > Layout > Two Panes Stacked (Панели > Компоновка > Два окна одно под другим). Для изменения текущей проекции любого из окон щелкните на нем правой кнопкой мыши, чтобы сделать его активным, не снимая выделения с объектов, а затем щелкните и удерживайте левую кнопку мыши нажатой на центральном элементе меню оперативного доступа, помеченном буквами A/W. Появится контекстное меню с вариантами проекции.
Редактирование узловых точек трубы
Рисунок 6.11. Редактирование узловых точек трубы для получения более пологого наклона
В окне проекции Front (Вид спереди) выделите крайний слева столбец, содержащий три нижние узловые точки, и переместите их на восемь дюймов в отрицательном направлении оси X, как показано на Рисунок 6.12.
Результат дублирования опорных
Примечание
Чтобы сделать изображение объектов на рисунке более наглядным, используется режим Wireframe on Shaded (Каркас на затененном). Для его включения выберите команду Shading > Shade Options > Wireframe on Shaded (Затенение > Параметры затенения > Каркас на затененном) в меню любого из окон проекции.
Для заполнения остальных участков между балясинами используйте операцию дублирования. Последний промежуток оставьте пустым, он будет служить входом на крыльцо.
Скройте все слои, щелкая на крайнем слева квадратике, расположенном рядом с именем каждого слоя. Выделите с помощью рамки перила, балясины и вертикальные перекладины и, нажав комбинацию клавиш Ctrl+g, объедините их в группу. Затем выделите все объекты сцены и поместите их в слой Porch L.
Нажмите комбинацию клавиш Ctrt+s, чтобы сохранить сцену.
Результат создания одной из четырех
Рисунок 6.14. Результат создания одной из четырех поверхностей обрамления трубы 6.
Теперь осталось соединить друг с другом все стороны кромки. Для первых двух эта операция проводится элементарно. Выделите пару расположенных рядом поверхностей, полученных методом лофтинга. В контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+z, щелкните на квадратике, расположенном справа от команды Attach (Присоединение). В окне диалога Attach Options (Параметры присоединения) убедитесь, что переключатель Attach Method (Метод присоединения) стоит в положении Connect (Соединение), переключатель Multiple Knots (Повторяющиеся узловые точки) — в положении Keep (Сохранить), а флажок Keep Originals (Сохранять исходную поверхность) установлен. Нажмите кнопку Attach (Присоединить), и две поверхности соединятся в одну.
Процесс соединения остальных поверхностей требует выделения изопараметрических кривых для каждой из соединяемых частей. Эти кривые должны располагаться на стыке двух поверхностей. Если вы сняли выделение с созданной на предыдущем шаге поверхности, выделите ее снова и щелкните на ней правой кнопкой мыши. В появившемся контекстном меню выберите команду Isoparam (Изопараметрическая кривая). Щелкните на соединительной кривой и, не отпуская кнопку мыши, слегка перетащите указатель. Затем, нажав клавишу Shift, щелчком выделите расположенную рядом поверхность, щелкните на ней правой кнопкой мыши и выберите в появившемся контекстном меню команду Isoparam (Изопараметрическая кривая). Нажмите и удерживайте клавишу Shift и повторите щелчок с перетаскиванием указателя примерно в том же месте, что и в первый раз, как показано на Рисунок 6.15. Так как операция выделения не включается в список последних применявшихся команд, последней в данном случае является команда Attach (Присоединение). Повторите ее, нажав клавишу д. Повторите описанную процедуру для соединения друг с другой остальных участков поверхности кромки, чтобы получить единый объект. Назовите его ChimneyLip.
Криваяпрофиль вращением
Рисунок 6.1. Кривая-профиль, вращением которой будет получена балясина

Совет
СОВЕТ
При создании кривой всегда можно нажать клавишу Backspace, стирая последнюю созданную точку, или клавишу Insert, переходя в режим перемещения управляющих точек.
Обычно после создания кривой данного типа ей требуется дополнительное редактирование. Начнем с нижней части столбика, которая должна располагаться
под прямым углом к поверхности крыльца. Щелкните правой кнопкой мыши на кривой и выберите в появившемся меню команду Control Vertex (Управляющие точки), чтобы перейти в режим редактирования подобъектов данного типа. Выделите самую первую точку, созданную вами в сцене, и нажмите клавишу Delete.
Теперь заострим некоторые элементы профиля. В этом нам поможет инструмент CV Hardness (CV заострение). Изначально создаваемая NURBS-кривая является кривой третьего порядка, соответственно, программа устанавливает значение параметра Multiplicity (Множественность) в начальных и конечных точках равным трем. Для участков кривой между любыми двумя управляющими точками этот параметр равен единице. Инструмент CV Hardness (CV заострение) меняет значение параметра Multiplicity (Множественность).
Примечание
ПРИМЕЧАНИЕ
Инструмент CV Hardness (CV заострение) работает, только если параметр Multiplicity (Множественность) управляющих точек, расположенных справа и слева от выделенной, равен единице. То есть управляющие точки не должны быть начальными или конечными.
Выделите второй сверху пик или любую другую точку, кривизну которой вы считаете нужным изменить, и в контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+c, выберите команду CV Hardness (CV заострение). Результат данной операции показан на Рисунок 6.2.
Результат изменения
Рисунок 6.2. Результат изменения формы пика со скругленной на заостренную
Теперь пришло время преобразовать кривую-профиль в тело вращения. В результате выделения она должна приобрести ярко-зеленый цвет. Если этого не произошло, нажмите клавишу F8 для выхода из режима редактирования подобъектов. В контекстном меню, вызываемом с помощью клавиатурной комбинации Ctrl+Alt+z, выберите команду Revolve (Вращение). Чтобы лучше рассмотреть получившийся объект, нажмите клавишу 3, устанавливая максимальный уровень детализации, и затем перейдите к четырехоконному представлению. Нажмите комбинацию клавиш Shift+F, увеличивая масштаб изображения во всех окнах проекции таким образом, чтобы выделенный объект целиком разместился в их границах, как показано на Рисунок 6.3.
Примечание
ПРИМЕЧАНИЕ
Теперь, когда вы можете видеть полученную вращением профиля поверхность, может оказаться, что она отличается от той, которую вы ожидали увидеть.
Если в процессе создания сцены была нажата кнопка Construction History (История создания), можно выделить исходную кривую и отредактировать поверхность в интерактивном режиме. Также имеется возможность изменения оси вращения. Для этого в разделе Inputs (Входные данные) окна каналов выделите имя revolve1, щелкните правой кнопкой мыши в окне проекции Front (Вид спереди) и нажмите клавишу t. Появятся три управляющих вектора, два из которых перемещают конечные точки, а третий — всю ось. Попытавшись переместить их, вы увидите, как ориентация оси влияет на вид тела вращения.
Формапрофиль на основе
h2>
Рисунок 6.22. Форма-профиль, на основе которой будет создан оконный переплет

Переместите опорную точку профиля в его геометрический центр. Нажмите и удерживайте клавишу с и щелкните средней кнопкой мыши на правом вертикальном ребре квадрата. Если теперь слегка сдвинуть указатель мыши, опорный центр профиля окажется привязанным к данному ребру. Сдвиньте его в нижний правый угол, как показано на Рисунок 6.23. Теперь нужно повернуть профиль на 45 градусов и создать еще три дубликата для остальных углов квадрата. Затем между парами профилей методом лофтинга будут созданы участки поверхности, формирующие оконный переплет. Продублируйте, переместите и поверните требуемым образом каждый из профилей, как показано на Рисунок 6.23.

Рисунок 6.23. Четыре профиля, на основе которых будет создан оконный переплет, расположены в четырех углах квадрата
По очереди выделите каждый из профилей и откройте окно диалога Loft Options (Параметры лофтинга). Для этого в контекстном меню, вызываемом с помощью клавиатурной комбинации Ctrt+Alt+z, щелкните на квадратике, расположенном справа от команды Loft (Лофтинг). Убедитесь, что переключатель Surface Degree (Кривизна поверхности) стоит в положении 1 Linear (Линейная), и установите флажок Close (Замкнутый), чтобы сформировать замкнутую поверхность. Нажмите кнопку Loft (Создать поверхность), и оконный переплет будет сформирован, как показано на Рисунок 6.24.

Рисунок 6.24. Поверхность, полученная в результате лофтинга
Теперь можно разделить окно на четыре части, добавив горизонтальную и вертикальную перегородки. Создайте куб и введите в поле Scale X (Масштабирование по оси X) значение 48. Поместите его в центр плоскости окна, продублируйте и поверните дубликат на 90 градусов вокруг оси Z. В поле Scale X (Масштабирование по оси X) введите значение 36.
Создайте NURBS-примитив Plane (Плоскость) и введите в поля Rotate X (Поворот относительно оси X), Scale X (Масштабирование по оси X) и Scale Т. (Масштабирование по оси Z) значения 90, 48 и 36. Поместите плоскость в оконный проем за поперечные перекладины и присвойте ей имя Glass.
Для формирования оконного проема нужно спроецировать исходный квадрат на стену и применить операцию подрезки. Выделите одну из сторон квадрата, нажмите клавишу Т и затем, удерживая клавишу Shift, щелкните поочередно на внутренней и на наружной стенах. В контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+z, выберите команду Project Curve on Surface (Спроектировать кривую на поверхность). Теперь все готово к тому, чтобы вырезать отверстия в обеих стенах. Сделайте это с помощью команды Trim Tool (Подрезка).
Выделите все части окна, включая квадрат, который использовался для проецирования кривых на стены, нажмите комбинацию клавиш Ctrl+g и присвойте образованной группе имя Window. Выберите в меню оперативного доступа команду Modify > Center Point (Изменить > Центрировать опорную точку), чтобы переместить опорную точку группы в ее геометрический центр. Так как история создания объекта фиксировалась, перемещение оконного переплета будет сопровождаться перемещением оконного проема. Поэтому если вас не устраивает положение окна на стене, просто переместите его.
Удалите историю создания окна, создайте его дубликат и поместите на передней стене дома, рядом с входной дверью, как показано на Рисунок 6.25.

Рисунок 6.40. Окончательный вид дома Подведем итоги
Откройте окно диалога Outtiner (Структура) и щелкните на квадратике, расположенном слева от имени Windowl. В раскрывшейся ветви дерева иерархии выделите все названия сторон квадрата (topnurbsSquare, leftnurbsSquare и т. п.). В итоге окажется выделенным квадрат, который нужно спроецировать на поверхность и повторить операцию, описанную в седьмом шаге.
Создайте новый слой с именем WindiwsL, поместите в него оба окна и сделайте видимыми все слои в сцене. Моделирование дома окончено!
Сохраните сцену под именем Windows.
Заготовка для окна
Рисунок б.21. Заготовка для окна, размещенная на одной из сторон дома
Создание дополнительных элементов
Создание дополнительных элементов
Последними деталями, которые нужно добавить к дому, являются дверь и окна. Но перед тем как приступить к моделированию этих объектов, нужно создать для них проемы в стенах.
Создание сложных поверхностей
h2>Привязки. Любой элемент сцены можно поместить точно в нужное место благодаря привязкам к узлам сетки, ребрам и кривым.
Воссоздание поверхностей. Имеется возможность восстановления NURBS-поверхности, разбитой на отличное от исходного количество фрагментов, для сохранения текущей формы, а также добавления и удаления деталей в определенных областях.
Моделирование на базе уже существующих объектов. Вы можете начать создание любого объекта, продублировав уже существующий объект или его часть и добавив новые элементы.
В этой главе вам снова предстоит использовать контекстные меню, которые были загружены в начале главы 5. Имейте в виду, что все упоминаемые команды можно легко найти также в меню оперативного доступа.
Ключевые термины
Узловые точки (Edit points). Точки, лежащие на кривой или поверхности. Любая форма создается в виде последовательности узловых точек. Их перемещение вызывает изменение формы кривой или поверхности.
Управляющие точки (Control vertex). Точки, определяющие форму кривой или поверхности.
Изопараметрическая кривая (Isoparam). Кривая на NURBS-поверхности, дающая представление об ее топологии.
Интервал (Span). Часть кривой между двумя узловыми точками. Интервалы невозможно редактировать напрямую, они изменяются при перемещении узловых точек.
Каркас кривой (Hull). Набор прямых линий, соединяющих управляющие точки.
Множественность (Multiplicity). Коэффициент, связанный с каждой точкой кривой, определяющий, насколько острым будет угол в данной точке.
Опорная точка (Pivot point). Точка, принятая в качестве центра для преобразований поворота и масштабирования.
Моделирование крыльца
Упражнение. Моделирование крыльца
Следующим шагом в моделировании крыльца будет создание ограждения, лестницы и крыши.
Скройте все слои, имеющиеся в сцене, щелкая на крайнем слева квадратике, расположенном рядом с именем каждого слоя. В итоге в окнах проекции не должно остаться ни одного объекта. Нажмите комбинацию клавиш Shift+a, которая приводит к размещению всех объектов в границах окон проекции. Таким способом вы проверите, не содержит ли сцена объектов, которые не принадлежат ни одному из слоев. В случае их обнаружения добавьте такие объекты в соответствующий слой. Разверните на весь экран окно проекции Front (Вид спереди). Дайте крупным планом точку начала координат, так как вам придется работать с координатной сеткой. Если на данный момент она скрыта, выберите в меню оперативного доступа команду Display > Grid (Отображение > Сетка). Балясины перил мы будем моделировать в стиле викторианской эпохи, что добавит домику монстра особый колорит. Для начала нужно создать профиль балясины, а затем использовать метод вращения образующей для получения объекта.
В контекстном меню, вызываемом комбинацией клавиш Ctrl+c, выберите команду CV Curve (Управляющие точки кривой). Первая точка должна располагаться в начале координат. При ее размещении используйте привязку к узлам сетки. Затем ориентируйтесь на Рисунок 6.1, демонстрирующий готовый вид профиля. Не беспокойтесь по поводу соотношения размеров балясины и дома, ведь вы всегда можете прибегнуть к преобразованию масштабирования. Последняя точка профиля должна лежать на оси Y, как и первая. Нажмите клавишу Enter, чтобы зафиксировать форму кривой.
Создание дополнительных деталей крыльца
Упражнение. Создание дополнительных деталей крыльца
Итак, пол будущего крыльца уже готов, но он до сих пор висит в воздухе. Теперь
пришло время заняться созданием столбов опоры.
Вернитесь к четырехоконному представлению, используя команду меню оперативного доступа Panels > Saved Layouts > Four Views (Панели > Варианты компоновки > Четырехстенное представление). Создайте NURBS-примитив Cube (Куб), присвойте ему имя PorchLeg и введите в поля Scale X (Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) окна каналов значения 6,20 и 6 соответственно.
В окне проекции Тор (Вид сверху) переместите объект PorchLeg в нижний правый угол крыльца. Используйте режим привязки, чтобы поместить куб точно в угол плоскости крыльца, как показано в левой нижней четверти Рисунок 6.4. В окне проекции Front (Вид спереди) переместите столб опоры таким образом, чтобы его верхняя плоскость на три дюйма возвышалась над верхней плоскостью крыльца. Нижняя плоскость опорного столба должна располагаться на одном уровне с нижней плоскостью фундамента дома. Чтобы лучше отследить этот момент, можно на время переместить объект PorchLeg к стене дома, а потом вернуть его на место нажатием клавиши z.
Сейчас форма опорного столба очень проста. Имеет смысл сделать ее немного изящнее. Нажмите клавишу F9 для перехода в режим выделения подобъек-тов. В результате вы обнаружите, что узловые точки находятся только в углах объекта PorchLeg, что делает невозможным изменение его формы. К счастью, в Maya есть инструмент Rebiuld Surface (Перестройка поверхностей), с помощью которого можно изменить параметры уже существующей поверхности. Вернитесь в режим редактирования объектов, нажав клавишу F8. В контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+z, щелкните на квадратике, расположенном справа от команды Rebuild (Перестройка). В меню Edit (Правка) окна диалога Rebiult Surface Options (Параметры перестройки поверхности) выберите команду Reset Settings (Сбросить настройки). Параметры Number of Spans U (Число интервалов по U-координате) и Number of Spans V (Число интервалов по V-координате) определяют число разбиений поверхности. По умолчанию их значение равно 4 и оно вполне подходит для наших целей. Установите переключатели Degree U (Степень кривизны no U) и Degree V (Степень кривизны по V) в положение 1 Linear (Линейная) и нажмите кнопку Rebiuld (Перестроить). На поверхности куба появятся дополнительные управляющие точки, как показано на Рисунок 6.4.
Снова переключитесь в режим редактирования подобъектов, нажав клавишу F9. Измените масштаб верхних трех рядов узловых точек, как показано на Рисунок 6.5. Проверяйте в окнах проекции Тор (Вид сверху) и Front (Вид спереди), что в число выделенных объектов попадают только узловые точки. Для упрощения этой задачи проследите, чтобы среди кнопок строки состояния, предназначенных для формирования маски выделения, была нажата только крайняя левая кнопка.
Примечание
ПРИМЕЧАНИЕ
Проще всего осуществить требуемую деформацию столба, выделяя горизонтальные ряды управляющих точек в окне проекции Front (Вид спереди) и изменяя их масштаб. Если выделить несколько рядов управляющих точек одновременно, можно случайно изменить высоту объекта, так как центр преобразования масштабирования находится в геометрическом центре выделенного набора. Но если изменить таким способом положение нижнего ряда управляющих точек, основания опорного столба и дома больше не будут располагаться на одном уровне, поэтому лучше всего выделять и редактировать только точки, расположенные в одном ряду.
Создание двери
Упражнение. Создание двери
Теперь пришло время заняться моделированием двери. Проще всего сделать это, взяв за основу NURBS-цримитив Cube (Куб). Затем можно спроецировать на него кривые, подрезать лишние участки поверхности и добавить недостающие детали.
Создайте NURBS-примитив Cube (Куб) и введите в поля Scale X (Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) окна каналов значения 2, 96 и 48 соответственно, чтобы размеры объекта совпадали с размерами созданного ранее дверного проема. Присвойте объекту имя Door.
Теперь нужно расположить дверь в предназначенном для нее месте. Введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) значения 67, -94 и -67 соответственно. В поля Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) введите значения 95,5 и 47,5 соответственно, чтобы создать небольшой зазор между дверью и косяком.
Создайте новый слой, присвоив ему имя DoorL Убедитесь, что объект Door выделен полностью, и добавьте его в слой, который затем сделайте невидимым.
Ручку двери мы создадим вращением кривой-профиля. В контекстном меню, вызываемом с помощью клавиатурной комбинации Ctrl+c, щелкните на квадратике, расположенном справа от команды CV Curve (Управляющие точки кривой), и убедитесь, что переключатель Curve Degree (Порядок кривой) стоит в положении 3 Cubic (Третий). Это даст вам возможность создания кривых линий. Перейдите в окно проекции Front (Вид спереди) и разверните его на весь экран. Для получения острого угла нужно щелкнуть три раза в одном и том же месте. Соответственно двойной щелчок на одном месте приводит к появлению менее острого угла. Используйте в качестве образца кривой Рисунок 6.18. Для фиксации формы кривой нажмите клавишу Enter. Затем воспользуйтесь командой меню оперативного доступа Modify > Center Point (Изменить > Центрировать опорную точку). В результате опорная точка окажется расположенной в геометрическом центре созданной кривой. Теперь нажмите клавишу Insert и в режиме привязки к узлам сетки переместите опорную точку в центр основания будущего объекта, как показано на Рисунок 6.18. Таким способом будет указана начальная точка оси вращения. Не забудьте снова нажать клавишу Insert для выхода из режима редактирования опорной точки.

Рисунок 6.18. Кривая-профиль, на основе которой будет создана дверная ручка, готова к операции Revolve
Убедитесь, что кривая выделена, и выберите в контекстном меню, вызываемом с помощью клавиатурной комбинации CtrU-Alt+z, команду Revolve (Вращение). Как видите, полученный объект отличается от запланированного, так как вращение происходит вокруг неверной оси. Изменить ее можно в разделе Inputs (Входные данные) окна каналов, так как перед выполнением упражнений этой главы мы включили запись истории редактирования объектов. Измените значение параметра Axis Y (Ось Y) на ноль, а параметра Axis X (Ось X) на единицу. Теперь вращение образующей будет происходить вокруг оси X.
Если вас не устраивает форма полученной ручки, подкорректируйте вид кривой-профиля. Затем выберите в меню оперативного доступа команду Modify > Center Point (Изменить > Центрировать опорную точку) и переместите опорную точку в центр основания объекта, как показано на Рисунок 6.19.


Рисунок 6.19. Вид дверной ручки в режиме максимальной детализации
Присвойте объекту имя DoorKnob.
Сделайте видимым слой DoorL, чтобы поместить ручку на нужное место. При этом вам понадобится изменить ее масштаб. Затем удалите историю ее создания и кривую-профиль.
Создайте копию дверной ручки, поместив ее на противоположную сторону двери. Для этого достаточно поставить знак «минус» перед текущим значением поля Scale X (Масштабирование по оси X) и переместить копию в требуемое положение.
Выделите все части двери, нажмите комбинацию клавиш Ctrl+g и присвойте полученной группе имя Door. Поместите группу в слой DoorL.
Теперь нужно изменить положение опорной точки двери, чтобы вращение происходило вокруг места подвеса двери к стене. Для начала оставьте видимыми только объекты слоя DoorL. Затем выделите группу Door и нажмите клавишу Insert для перехода в режим редактирования опорной точки.
В окне проекции Perspective (Перспектива) сделайте ясно видимым правое нижнее ребро двери, примерно, как показано на Рисунок 6.20, затем, удерживая нажатой клавишу с, щелкните на нем средней кнопкой мыши и слегка сдвиньте указатель. В результате перемещения опорной точки будут ограничены указанным ребром. Поместите ее в ближний к вам угол, как показано на Рисунок 6.20, и нажмите клавишу Insert, чтобы выйти из режима редактирования опорной точки. Теперь поворот двери происходит правильным образом.

Рисунок 6.20. Новое положение опорной точки, полученное в результате ее перемещения в режиме привязки к кривой
Создание дверного проема
Упражнение. Создание дверного проема
Создайте NURBS-примитив Cube (Куб) и измените его размеры, введя в поля Scale X (Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) значения 13, 96 и 48 соответственно. Этот куб должен проходить сквозь внутреннюю и внешнюю стены, а также фундамент дома. Расположить его нужно напротив входа на крыльцо. Мы использовали для параметров Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) значения 68, -94 и -67 соответственно.
Теперь, когда куб находится в нужном месте, можно применить функцию Intersect Surfaces (Пересечь поверхности) для создания кривых на месте его пересечения с фундаментом и стенами. Для начала выделите внутреннюю стену, наружную стену и сторону фундамента, которые пересекаются с кубом, а затем добавьте к выделенному набору одну из сторон куба, перпендикулярную названным поверхностям. В контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+z, щелкните на квадратике, расположенном справа от команды Intersect Surfaces (Пересечь поверхности). В окне диалога Intersect Surfaces Options (Параметры пересечения поверхностей) установите переключатель Create Curve For (Создать кривую для) в положение Both Surfaces (Обеих поверхностей) и нажмите кнопку Intersect (Пересечь). Это приведет к появлению трех кривых. Повторите этот процесс для остальных сторон куба. Чтобы получить возможность выделить нижнюю сторону, необходимо скрыть слой Porch L.
Теперь обрежем куб в местах пересечения с фундаментом и стенами. Выделите фундамент и выберите в контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+z, команду Trim Tool (Подрезка). Щелкните на участке фундамента, отличном от дверного проема, и нажмите клавишу Enter. Повторите этот процесс для одной из стен. При выделении внешней стены станет видна горизонтальная щель, возникшая из-за того, что стена создавалась отдельно от фундамента. Соответственно, перед тем как нажать клавишу Enter, выделите верхнюю и нижнюю части объекта.
Итак, дверной проем практически готов. Выделите переднюю и заднюю плоскости куба и удалите их, чтобы получить вход в дом.
В процессе создания кривых на пересечении поверхностей переключатель Create Curve For (Создать кривую для) в окне диалога Intersect Surfaces Options (Параметры пересечения поверхностей) был установлен в положение Both Surfaces (Обе поверхности). Это пригодится нам сейчас, когда нужно убрать выступающие из стен фрагменты куба, моделирующего дверной проем. Для удобства сделайте невидимыми слои OuterWallsL и InnerWallL и выделите одну из миквъ-моделирование
поверхностей куба. В контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+z, выберите команду Trim Tool (Подрезка).
Щелкните на центральном участке выделенной поверхности и нажмите клавишу Enter. Боковые участки после этого должны исчезнуть. Повторите эту операцию для остальных сторон куба.
Скройте все слои сцены, и вы увидите, что остался только объект, моделирующий дверной проем. Выделите его и, щелкнув правой кнопкой мыши на имени слоя OuterWallsL, выберите в появившемся контекстном меню команду Add Selected Objects (Добавить выделенные объекты).
Совет
Если у вас возникает впечатление, что в готовой поверхности имеются дыр-ки, выделите ее и увеличьте уровень детализации, нажав клавишу 3.
Создание лестницы
Упражнение. Создание лестницы
Теперь, когда крыльцо готово, пришла пора смоделировать ведущую на него лестницу. Вам предстоит создать два боковых крепления, на которые будут помещены ступеньки.
Сделайте видимым слой PorchL. Разверните на весь экран окно проекции Front (Вид спереди). В контекстном меню, вызываемом клавиатурной комбинацией Ctrl+с, щелкните на квадратике, расположенном справа от команды ЕР Curve (Узловые точки кривой). Убедитесь, что переключатель Curve Degree (Порядок кривой) стоит в положении 1 Linear (Линейная).
Расположите первую узловую точку тремя дюймами ниже и тремя дюймами правее нижнего угла объекта PorchPanel. На Рисунок 6.7 его положение отмечено знаком +. Вторая точка должна располагаться на два дюйма выше первой, третья — восемью дюймами правее. Положение остальных точек можно отследить по Рисунок 6.7. Последняя точка должна располагаться на месте первой. Разместив ее, нажмите клавишу Enter. Чтобы поместить опорную точку в геометрический центр полученной формы, выберите в меню оперативного доступа команду Modify > Center Point (Изменить Ь Центрировать опорную точку).

Рисунок 6.7. Форма, на основе которой будет создано боковое крепление лестницы
Перейдите в окно проекции Side (Вид сбоку) и поместите кривую перед входом на крыльцо, как показано на Рисунок 6.8. Постарайтесь не смещать ее вдоль оси Y, так как она уже выровнена по высоте. Теперь нужно сделать опорную точку объекта точкой отсчета локальной системы координат. Для этого используется команда меню оперативного доступа Modify > Freeze Transformations (Изменить > Зафиксировать преобразования). Объект при этом не меняет своего положения в пространстве, хотя все его координаты принимают нулевое значение. Обратите внимание на вид окна каналов на Рисунок 6.8.
Откройте окно диалога Duplicate Options (Параметры дублирования) и выберите в меню Edit (Правка) этого окна команду Reset Settings (Сбросить настройки) и нажмите кнопку Duplicate (Дублировать). Затем сместите полученную копию на два дюйма в отрицательном направлении оси Z. Для этого введите в поле Translate Z (Смещение по оси Z) окна каналов значение -2.
Выделите обе кривые и выберите в контекстном меню, вызываемом с помощью комбинации клавиш Ctrl+Alt+z, команду Loft (Лофтинг). Это приведет к появлению поверхности, натянутой на кривые.
Выделите одну из кривых и в контекстном меню, вызываемом клавиатурной комбинацией Ctrt+Alt+z, щелкните на квадратике, расположенном справа от команды Planar (Плоскость). В окне диалога Planar Options (Параметры плоскости) убедитесь, что переключатель Degree (Кривизна) стоит в положении Linear (Линейная), и нажмите кнопку Planar Trim (Фрагмент плоскости). Это приведет к появлению участка плоской поверхности, ограниченного выделенной кривой, как показано на Рисунок 6.8. Имейте в виду, что этот инструмент работает только с замкнутыми кривыми.

Рисунок 6.8. Методом лофтинга была создана поверхность между двумя точечными кривыми, затем к одной из кривых был применен инструмент Planar
Выделите вторую кривую и описанным в шестом шаге методом создайте еще один участок плоской поверхности. Первое боковое крепление готово.
Теперь объект принял свою окончательную форму, поэтому имеет смысл удалить историю его редактирования. Выделите объект рамкой и выберите в меню оперативного доступа команду Edit > Delete by Type > History (Правка > Удалить все объекты типа > История). Убедитесь, что все части объекта по-прежнему выделены, и нажмите комбинацию клавиш Ctrl+g, чтобы сформировать единую группу. Присвойте ей имя StepFrame. Теперь можно удалить исходные кривые. Их легко выделить в окне Outliner (Структура), щелкнув на квадратике, расположенном слева от имени группы StepFrame.
Убедитесь, что группа StepFrame выделена, и введите в поле Translate X (Смещение по оси X) окна каналов значение -3, чтобы подвинуть боковое крепление ближе к основанию крыльца.
Продублируйте объект StepFrame и переместите дубликат вдоль оси Z, расположив его с противоположной стороны от входного проема, как показано на Рисунок 6.9, В нашем случае в поле Translate I (Смещение по оси Z) окна каналов было введено значение -37, но у вас это число может быть другим, потому что размещение первого крепления производилось на глаз.

Рисунок 6.9. Теперь верхняя ступенька находится на своем месте
Создайте NURBS-примитив Cube (Куб) и присвойте ему имя Step. На его основе будет создана верхняя ступенька. Введите в поля Scale X (Масштабирование по оси X), Scale Y (Масштабирование no-оси Y) и Scale Z (Масштабирование по оси Z) окна каналов значения 10, 1,5 и 41 соответственно. Разверните на весь экран окно проекции Front (Вид спереди) и введите в поле Translate X (Смещение по оси X) значение 143, чтобы поместить ступеньку на одной линии с передним краем крыльца. Теперь осталось сместить ее на 146,25 дюйма в отрицательном направлении оси Y, и первая ступенька лестницы окажется на нужной высоте.
Перейдите в окно проекции Side (Вид спереди) и введите в поле Translate Z (Смещение по оси Z) окна каналов значение -70,5. Ступенька окажется на нужном месте, как показано на Рисунок 6.9.
Создайте копию ступеньки и поместите ее на расположенном ниже выступе бокового крепления. Мы присвоили параметрам Translate X (Смещение по оси X) и Translate Y (Смещение по оси Y) значения 151 и -152,25 соответственно.
Поместите боковые опоры и ступеньки в слой PorchL. Скройте все остальные слои, выделите рамкой оставшиеся в сцене объекты и нажмите комбинацию клавиш Ctrl+g. Присвойте сформированной группе имя PorchGroup.
Нажмите комбинацию клавиш Ctrl+s, чтобы сохранить сцену.
Создание окон
Упражнение. Создание окон
Итак, дом практически готов, за исключением того, что в нем пока нет окон. Вам предстоит создать оконный переплет, нарисовав кривую-профиль и использовав для формирования поверхности метод лофтинга. После этого моделирование переплета и стекол будет выполняться простым масштабированием кубов.
Оставьте видимыми только слои InnerWallL и OuterWallsL. Переключитесь в окно проекции Front (Вид спереди), чтобы получить возможность наблюдать боковую сторону дома. Создайте NURBS-примитив Square (Квадрат) и введите в поля Rotate X (Поворот относительно оси X), Scale X (Масштабирование по оси X) и Scale Z (Масштабирование по оси Z) значения 90, 48 и 36 соответственно, как показано на Рисунок 6.36. В окне проекции Тор (Вид сверху) переместите квадрат таким образом, чтобы он оказался на поверхности наружной стены дома. Его итоговая координата по оси Z должна быть равна -104. Затем сделайте значение координаты Y равным -82.
В окне проекции Тор (Вид сверху) с помощью инструмента ЕР Curve (Узловые точки кривой) создайте кривую-профиль, на основе которой будет получен оконный переплет. В качестве образца используйте Рисунок 6.22. Перед начатом создания кривой убедитесь, что переключатель Curve Degree (Порядок кривой) в окне диалога Tool Settings (Параметры инструмента) стоит в положении 1 Linear (Линейная). приемы раооты с NUKbb-ооъеитами
Создание трубы
Упражнение. Создание трубы
Пришло время добавить к дому трубу. В процессе ее создания вы освоите несколько новых методов редактирования NURBS-примитивов.
Сделайте видимыми все слои, кроме PorchL и RoofL.
Создайте NURBS-примитив Cube (Куб) и присвойте ему имя Chimney.
Чтобы переместить трубу за дом, введите в поля Translate X (Смещение по оси X) и Translate Y (Смещение по оси Y) окна каналов значения -100 и -89 соответственно.
Придадим кубу нужные пропорции. Введите в поля Scale X (Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) значения 40, 140 и 40 соответственно.
Теперь нужно переместить опорную точку объекта в центр его основания. Убедитесь, что куб по-прежнему выделен, активизируйте инструмент Move (Переместить) и нажмите клавишу Insert для перехода в режим редактирования опорной точки. В окне проекции Front (Вид спереди) переместите опорную точку вниз, используя режим привязки к узлам сетки. Снова нажмите клавишу Insert, чтобы вернуться в режим редактирования объектов.
Пока что труба не достигает крыши. Нужно вытянуть ее по оси Y. Вместо ввода требуемого значения в поле Scale Y (Масштабирование по оси Y) окна каналов, активизируйте инструмент Scale (Масштабировать), нажав клавишу г, и переместите зеленый управляющий вектор. Обратите внимание, что увеличение размера по оси Y теперь происходит, начиная с основания куба, так как именно там расположена опорная точка. Введите в поле Scale Y (Масштабирование по оси Y) значение 225, чтобы труба возвышалась над крышей приблизительно на два фута.
Изменим форму трубы, чтобы придать ей более реалистичный вид. К сожалению, текущее количество узловых точек объекта не позволяет осуществить подобное редактирование. В контекстном меню, вызываемом нажатием комбинации клавиш Alt+z, щелкните на квадратике, расположенном справа от команды Rebuild (Перестройка). Введите в поля Number of Spans U (Число интервалов по U-координате) и Number of Spans V (Число интервалов по V-координате) значение 6. Убедитесь, что переключатели Degree U (Степень кривизны по (J) и Degree У,(Степень кривизны по V) стоят в положении 1 Linear (Линейная), как показано на Рисунок 6.10. Затем нажмите кнопку Rebiuld (Перестроить).
Усовершенствование формы трубы
Упражнение. Усовершенствование формы трубы
Итак, труба готова и даже помещена на предназначенное для нее место. Можно заняться моделированием различных деталей. Для начала создадим кромку вокруг жерла трубы, поместив вокруг него прямоугольник и применяя метод лофтинга для создания поверхностей между двумя кривыми. Эту операцию придется повторить четыре раза. Два квадрата используются для моделирования внешней поверхности кромки, а другие два — для внутренней.
Оставьте видимым только слой Chimney!..
В контекстном меню, вызываемом с помощью комбинации клавиш Ctrl+z, выберите команду Square (Квадрат). В поля Translate X (Смещение по оси X) и Translate Y (Смещение по оси Y) окна каналов введите значения -82 и 66 соответственно, чтобы положить квадрат на верхнюю плоскость трубы. Измените его размеры таким образом, чтобы он располагался на расстоянии около двух дюймов от ребер трубы. В нашем случае вполне удовлетворительные результаты получались при вводе в поля Scale X (Масштабирование по оси X) и Scale Z (Масштабирование по оси Z) числа 40.
Продублируйте квадрат и переместите его на четыре дюйма в отрицательном направлении оси Y.
Примечание
ПРИМЕЧАНИЕ
Подобно NURBS-примитиву Cube (Куб), который состоит из шести плоскостей, NURBS-примитив Square (Квадрат) составлен из четырех кривых. Поэтому, чтобы выделить его целиком, нужно щелкнуть на любой из граней, а затем нажать клавишу t.
Снова выделите верхний квадрат, продублируйте его и уменьшите на десять дюймов, чтобы он оказался меньше дымового отверстия. Затем продублируйте его и переместите копию на четыре дюйма вниз. Итак, все необходимое для создания кромки готово.
Для начала нужно выделить изопараметрическую кривую одной из поверхностей трубы. Выделите любую поверхность, щелкните на ней правой кнопкой мыши и выберите в появившемся контекстном меню вариант Isoparam (Изопараметрическая кривая). Теперь можно выделить верхнюю грань трубы, а затем, удерживая клавишу Shift, щелчком выделить каждую из линий, параллельных этой грани, в следующем порядке: нижняя внешняя, верхняя внешняя, верхняя внутренняя, нижняя внутренняя. На Рисунок 6.14 показана поверхность, полученная при данном порядке выделения. В контекстном меню, вызываемом клавиатурной комбинацией Ctrl+Alt+z, щелкните на квадратике, расположенном справа от команды Loft (Лофтинг). В окне диалога Loft Options (Параметры лофтинга) убедитесь, что переключатель Surface Degree (Кривизна поверхности) стоит в положении 1 Linear (Линейная), и нажмите кнопку Loft (Создать поверхность). Повторите этот процесс для каждого из ребер верхнего основания трубы.
Усовершенствование модели дома
Усовершенствование модели дома
В данный момент основные контуры дома уже готовы. Пришла пора добавить необходимые детали и сделать модель более реалистичной. Если вы выполнили все упражнения главы 5, продолжите работу над своей сценой. В противном случае загрузите файл chOStutOSehd.mb.
Вид опорного столба после перестройки поверхности
Рисунок 6.4. Вид опорного столба после перестройки поверхности
Если вы случайно сняли
ВНИМАНИЕ
Если вы случайно сняли выделение с куба и хотите выделить его снова, нужно сначала выделить одну из граней этого объекта и нажать клавишу ^, чтобы перейти к верхнему узлу группы. Если открыто окно диалога Outliner (Структура), вышеописанного шага можно избежать, выделив объект по имени.
Сделайте верхнее окно проекции окном Perspective (Перспектива) и нажмите клавишу 5 для перехода в режим тонированного отображения. В этом случае вы легко удалите две самые маленькие грани преобразованного куба. Образовавшиеся проемы впоследствии будут закрыты вертикальными столбцами опоры. По очереди выделите эти грани и нажмите клавишу Delete.
Выделите объект PorchPanel. Откройте окно диалога Duplicate Options (Параметры дублирования), выберите в меню Edit (Правка) этого окна команду Reset Settings (Сбросить настройки) и нажмите кнопку Duplicate (Дублировать). Созданная копия будет расположена непосредственно поверх оригинала. Активизируйте инструмент Move (Переместить) и сместите копию вдоль оси Z таким образом, чтобы она оказалась на противоположном конце крыльца. В процессе перемещения используйте режим привязки к узлам сетки. Если вы случайно снимите выделение с копии, его всегда можно восстановить в окне диалога Outliner (Структура), выделив в нем имя PorchPanell. Так как дом выровнен относительно оси X, можно ввести в поле Translate Т. (Смещение по оси Z) окна каналов значение -94, так как исходный объект имеет Z-координату, равную 94.
Продублируйте объект PorchPanell и введите в поле Rotate Y (Поворот относительно оси Y) окна каналов значение 90, а в поле Scale X (Масштабирование по оси X) — значение 190. Поместите объект PorchPanelZ перед объектом PorchFloor. Сохраните сцену под именем ch06tut01b.mb. Если вы хотите сравнить свой результат с нашим, загрузите файл ch06tut01end.mb.
Примечание
Перемещение объектов по умолчанию происходит в глобальной системе координат. Это можно изменить в окне диалога Tool Settings (Параметры инструмента), которое вызывается двойным щелчком на кнопке инструмента Move (Переместить). Если параметры инструмента были изменены и вы хотите вернуть их исходные значения, воспользуйтесь кнопкой Reset Tool (Восстановить исходные параметры инструмента).
Выбор параметров инструмента Rebuild Surface
Рисунок 6.10. Выбор параметров инструмента Rebuild Surface

Удалите нижнюю и верхнюю плоскости куба. Нижняя плоскость не нужна, так как ее все равно не будет видно, а верхнюю вам в дальнейшем предстоит модифицировать. Для их выделения желательно перейти в окно проекции Perspective (Перспектива) и включить режим показа тонированных оболочек объектов. В этом случае выделить поверхность можно щелчком в произвольном ее месте, в то время как в режиме каркасного отображения нужно попасть на ребро каркаса.
Выделите любую грань трубы и нажмите клавишу Т для выделения всего объекта. В окне каналов должно появиться имя Chimney. Перейдите в режим редактирования подобъектов, нажав клавишу F9. В окне проекции Side (Вид сбоку) рамкой выделите три нижних ряда узловых точек. Активизируйте инструмент Scale (Масштабирование) и переместите синий управляющий вектор, увеличивая масштаб. Величину преобразования можно увидеть в строке подсказки. Оптимальным в данном случае является значение, примерно равное двум.
Теперь выделите четвертый снизу ряд узловых точек, как показано на Рисунок 6.11, и переместите его на один фут вниз (это 12 ячеек сетки), по направлению к основанию трубы.
Выделение изопараметрических кривых
Рисунок 6.15. Выделение изопараметрических кривых, расположенных на стыке двух поверхностей, которые нужно соединить
Создайте NURBS-примитив Cylinder (Цилиндр; и присвойте ему имя ChimneyPipe. Введите в поля Scale X (Масштабирование по оси X), Scale Y (Масштабирование по оси Y) и Scale Z (Масштабирование по оси Z) окна каналов значения 8,5, 14 и 8,5 соответственно. Разместите цилиндр поверх душевого отверстия трубы, как показано на Рисунок 6.16. Мы осуществили это преобразование, введя в поля Translate X (Смещение по оси X) и Translate Y (Смещение по оси Y) значения -82 и 80 соответственно.
Продвинутая 3D графика в пакете Maya
Инструмент Split Polygon
Инструмент Split Polygon
Теперь пришло время более творческой работы. Детальное моделирование лица монстра будет осуществляться с помощью инструмента Split Polygon (Разбиение полигонов), разбивающего каждую грань на заданное количество частей. Этот инструмент дает возможность использовать методику, изначально присущую NURBS-моделированию. Если попытаться создать голову на основе NURBS-кривых, в итоге придется разделить исходную заготовку на множество кривых, чтобы получить возможность моделировать мелкие детали. Но работа с сетками полигонов имеет преимущество, поскольку впоследствии не придется соединять друг с другом отдельные фрагменты поверхностей.
В предыдущих главах, посвященных моделированию на основе NURBS-кривых, большую роль играл режим привязки, благодаря которому оказывалось возможным поместить любую точку точно в предназначенное ей место. При работе с инструментом Split Polygon (Разбиение полигонов) вам также придется использовать привязку к ребрам полигонов. Кроме того, этот инструмент позволяет создавать ряд мишеней привязки (snapping magnets), связанных с числом разбиений ребра. Установив параметр Snapping Magnets (Мишени привязки) равным 2, вы легко разобьете ребро на три равные части, так как две мишени привязки будут размещены вдоль ребра на равных расстояниях от краев и друг от друга. Параметр Snapping Tolerance (Устойчивость привязки) устанавливает вес мишени привязки. Чем выше его значение, тем сильней эффект привязки.
Работу с инструментом Split Polygon (Разбиение полигонов) начнем с моделирования грубого контура головы, постепенно добавляя такие детали, как глаза и рот. Этот метод особенно любят аниматоры, предпочитающие работать в интерактивном режиме, почти как скульптор с глиной. Данный инструмент во многом идентичен инструменту ЕР Curve (Узловые точки кривой), используемому при работе с объектами, построенными на основе NURBS-кривых. Если вы случайно поместите точку не туда, куда нужно, ее можно переместить, нажав клавишу Insert, или удалить, нажав клавишу Backspace.
Эмуляция работы с инструментом
h2>Окно диалога Hypergraph. Вы увидите, как связаны между собой различные элементы сцены.
Связь параметров друг с другом. Установив связь одного параметра с другим, можно, например, сделать так, чтобы цвет объекта становился ярче по мере увеличения его высоты. В этой главе данная методика используется для установления связи между параметрами внешней аппроксимирующей и внутренней сглаженной сеток полигонов.
Плоскости изображения. Камере, транслирующей ортографическую проекцию объекта, можно назначить некоторое изображение, которое в итоге окажется зафиксированным в пространстве и видимым в окнах проекции. Этот метод используется для размещения в сцене набросков персонажей.
Создание монстра. На основе наброска вам предстоит создать детализированную голову персонажа.
Язык MEL. Вы познакомитесь с основами языка сценариев, управляющих всеми командами и функциями Maya.
Создание зеркальной копии, связанной с оригиналом. Эта функция позволяет редактировать только одну половину симметричного персонажа. Результаты этого редактирования автоматически отражаются на состоянии второй половины.
Сглаживание полигонов. Разбиение сетки полигонов на дополнительные грани способствует сглаживанию поверхности модели.
Ссылочный режим слоя. Можно сделать так, чтобы, оставаясь видимыми в окне проекции, объект или группа объектов были недоступны для выделения. Этот метод особенно полезен при операции выравнивания.
Ключевые термины
Выдавливание (Extrude). Процесс построения трехмерного объекта путем перемещения кривой или грани в пространстве.
Грань/ребро/вершина полигона (Polygon face/edge/vertex). Составные части поверхности полигона. Вершиной называется безразмерная точка в трехмерном пространстве или на плоскости, определяемая координатами X, Y и Z. Ребро — это линия края грани, соединяющая две вершины. Соединение трех ребер друг с другом в замкнутую форму образует грань, то есть область плоскости треугольной формы. Сетчатые оболочки могут насчитывать неограниченное число граней.
Маска выделения (Selection mask). Функция, активизируемая с помощью нажатия правой кнопки мыши над объектом и позволяющая выбирать типы подобъектов для выделения. Для полигонов - это ребра, вершины, грани и точки проекционных координат UV.
Моделирование головы
Моделирование головы
Работа в режиме эмуляции инструмента Subdivision Surfaces (Подразбиваемые поверхности) не относится к самым сложным приемам моделирования. Достаточно пары инструментов: Split Polygon (Разбиение полигонов) и Extrude Face (Выдавить грань). Процесс создания монстра напоминает лепку скульптур из глины. К фигуре постепенно добавляются отдельные части, и исходный геометрический объект принимает требуемую форму. Если вам сложно визуально представить этапы ее создания, сверяйтесь с рисунками данной главы.
Подготовка к моделированию
Подготовка к моделированию
В большинстве случаев получить представление о внешнем виде модели проще всего в режиме тонированной раскраски. Но это не значит, что в данном режиме процесс моделирования имеет наибольшую эффективность.
Примечание
ПРИМЕЧАНИЕ
В общем случае принято использовать режим каркасного отображения в ортографических окнах проекции, а режим тонированной раскраски в окнах центральных проекций.
Преимущество метода, которым мы воспользуемся в данной главе, состоит в том, что вам предстоит работать с каркасом, окружающим модель с более высоким разрешением. Простой каркас будет использоваться для создания сложной фигуры путем аккуратного разбиения управляющей сетки на дополнительные грани и перемещения ее вершин.
При моделировании фигуры обычно проще всего работать только с одной ее стороной. По этой причине для куба, на основе которого создается модель, нужно создать зеркальную копию, которая будет автоматически отражать все изменения, вносимые в оригинал.
Подготовка к разбиению поверхности на части
Подготовка к разбиению поверхности на части
Лучше всего для моделирования человеческой фигуры подходит инструмент Subdivision Surfaces (Подразбиваемые поверхности), но он доступен только в более дорогой версии программы Maya Unlimited. Этот инструмент использует сетку с низким разрешением для внесения изменений в сетку с высоким разрешением. Сетка с низким разрешением является грубой аппроксимацией модели, вокруг которой она располагается. В версии Maya Complete есть способ эмуляции работы с этим инструментом. Именно этим методом мы воспользуемся для моделирования монстра. Прежде всего нужно будет ввести в командной строке несколько команд языка MEL или активизировать скрытый сценарий. В процессе выполнения упражнений мы дадим вам пошаговую инструкцию по созданию объекта.
Примечание
ПРИМЕЧАНИЕ
Если у вас установлена версия программы Maya Unlimited, вы можете использовать инструмент Subdivision Surfaces (Подразбиваемые поверхности) вместо описываемого нами метода эмуляции. Для получения сетки полигонов с низкой плотностью, создаваемой в процессе выполнения упражнений, вам придется перейти в режим работы с полигонами.
Метод эмуляции работы с инструментом Subdivision Surfaces (Подразбиваемые поверхности) детально описан в книге Polygonal Modeling, поставляемой вместе с программным обеспечением Maya. Это можно сделать с помощью языка сценариев MEL. Сценарий создает копию исходного полигонального объекта и затем соединяет данные исходной формы с атрибутом InMesh (Входные данные сетки) копии. Этот атрибут описывает базовую структуру объекта, что позволяет изменять дубликат, в соответствии с изменениями формы оригинала. В упражнении, которое вам предстоит выполнить, происходит соединение атрибута OutMesh (Выходные данные сетки) первого куба с атрибутом InMesh (Входные данные сетки) второго. В результате вы будете работать с простой сеткой, автоматически передавая результаты редактирования на более сложный объект. На первый взгляд, это выглядит довольно сложно, но с нашей пошаговой инструкцией вы убедитесь, что это довольно элегантный метод редактирования полигональных сеток.
Перед тем как приступить к созданию персонажа, предпримем шаги, направленные на упрощение процесса работы. В большинстве своем персонажи симметричны. Но чтобы избежать необходимости вносить изменения в обе половины объекта, стараясь сохранять его симметрию, в Maya существует возможность сделать так, чтобы каждое внесение изменений в форму одной половины объекта автоматически отражалось на форме его второй половины. Этот метод позволяет сэкономить время и добиться совершенной симметрии. Впоследствии можно сделать фигуру слегка асимметричной, чтобы придать ей более натуральный вид. Обычно это делается после окончания редактирования симметричных деталей.
Подведем итоги
Подведем итоги
В этой главе вы познакомились с одним из основных способов моделирования на основе сетки полигонов — с эмуляцией работы инструмента Subdivision Surfaces (Подразбиваемые поверхности). Используя продемонстрированные методы, вы теперь сможете самостоятельно создавать органические объекты разного рода. Особое внимание мы уделили следующим темам:
Плоскости изображения. Существует возможность импортировать рисунок в сцену и использовать его в качестве опорного изображения для будущей модели.
Инструмент Split Polygon. С его помощью можно разбить каждую грань на произвольное число частей.
Выдавливание полигонов. Использование выдавливания является еще одним способом увеличения детализации поверхности объекта. Инструмент Extrude (Выдавить) идеально подходит для формирования выпуклостей и впадин.
Сглаживание. Данный процесс подразумевает увеличение числа полигонов сетки.
Связывание параметров. Благодаря связыванию симметричных половин объекта редактирование одной половины отражается на состоянии второй. И это только одна их возможностей применения связывания параметров.
Итак, вы познакомились с обоими способами моделирования в Maya — моделированием на основе NURBS-кривых и на основе полигонов — и научились пользе-ваться различными инструментами. К этому моменту вы, скорее всего, уже начали представлять себе масштаб потенциальных возможностей Maya. В следующих главах мы еще не раз вернемся к сцене с домиком монстра, чтобы продемонстрировать способы применения материалов, освещения сцены, анимации и визуализации полученного результата. Ведь моделирование — это только первый шаг!
Редактирование параметров раздела Placement Extras
Рисунок 7.6. Редактирование параметров раздела Placement Extras
Вид губ после перемещения всех групп ребер
Рисунок 7.10. Вид губ после перемещения всех групп ребер

Совет
СОВЕТ
Иногда бывает сложно выделить группу вершин с помощью рамки. В этом случае нажмите Ctrl+q, чтобы активизировать инструмент Lasso (Лассо), позволяющий создавать выделяющие области произвольной формы.
После создания губ вы, скорее всего, обнаружите, что форму головы тоже не мешало бы подкорректировать. Например, челюсть может выглядеть слишком широкой. Выделите вершины, определяющие форму этой области, и переместите их таким образом, чтобы получить нужную форму. В углах рта желательно оставить ребра, которые сливаются в одно, если закрыть персонажу рот. Это будет полезно при анимации головы.
Сохраните сцену под именем HeadMouth.
Размещение глазного яблока
Рисунок 7.12. Размещение глазного яблока
Результат удаления
h2>
Рисунок 7.13. Результат удаления просветов между веками и глазным яблоком

Создайте новый слой, присвойте ему имя EyesL и поместите в него оба глазных яблока. Сохраните сцену под именем HeadEyeBalls.
Итак, вы создали голову монстра, добавив к ней необходимые детали. Применяя набор повторяющихся действий к аппроксимирующей сетке полигонов, вы сформировали черты лица персонажа. Как несложно догадаться, остальные части тела создаются аналогичным образом: комбинируя создание новых граней, выдавливание и перемещение управляющих вершин. Кроме того, можно произвольно менять уровень детализации объекта, увеличивая или уменьшая число полигонов, составляющих сетку. Для анимации персонажа число разбиений можно сделать равным 1 или даже 0, чтобы уменьшить время отклика программы на ваши действия. Затем можно сделать число разбиений равным 2 или более и получить идеально сглаженную поверхность модели.
После моделирования тела, рук и ног вам останется только соединить две половины вместе, чтобы получить готового монстра, показанного на Рисунок 7.14. Затем попробуйте самостоятельно создать модель какого-нибудь другого персонажа, используя свои собственные рисунки.

Рисунок 7.14. Окончательный вид монстра
Установка необходимых
Рисунок 7.2. Установка необходимых параметров в разделе Poly Smooth Face History окна диалога Attribute Editor

Примечание
Примечание
Помните, что быстрее и аккуратнее всего выделить объекты сцены можно в окне диалога Outliner (Структура).
В данный момент попытки перемещения вершин внешнего куба не дадут результата. Нужно изменить атрибут .inputComponents (Входные компоненты), являющийся частью формы polySmoothFacel. Для этого следует выполнить Подготовка к разбиению поверхности на части несложную команду, которая сделает число граней переменной, автоматически обновляемой при редактировании поверхности. Убедитесь, что объект pCube2 по-прежнему выделен, и введите в командную строку следующую последовательность команд: setAttr polySmoothFacel.inputComponents -type "componentList" 1 "f[*]". Затем нажмите клавишу Enter. Теперь при редактировании формы pCubeShapel сглаженная форма будет автоматически изменяться.
Сглаженные кубы в окне диалога Outliner
Рисунок 7.3. Сглаженные кубы в окне диалога Outliner
В окне диалога Connection Editor (Редактор связей) можно связать определенные выходные данные объекта Smooth с входными данными объекта SmoothMirror. В окне Outliner (Структура) выделите строчку SmoothShape и нажмите кнопку Reload Left (Загрузить левую часть) окна диалога Connection Editor (Редактор связей). Затем выделите строчку SmoothMirrorShape в окне Outliner (Структура) и St.
нажмите кнопку Reload Right (Загрузить правую часть) окна диалога Connection Editor (Редактор связей). Теперь все готово к тому, чтобы соединить выходные данные половины объекта с входными данными зеркальной копии.
В списке Outputs (Выходные данные) выделите строку WorldMesh, а в списке Inputs (Входные данные) — строку SmoothMirrorShape. В результате названия обоих атрибутов будут выделены курсивом, как показано на Рисунок 7.4. Закройте окно диалога Connection Editor (Редактор связей).
Связанные атрибуты выделены курсивом
Рисунок 7.4. Связанные атрибуты выделены курсивом

Примечание
Примечание
Проверьте, как работает созданная связь, изменяя топологию объекта Cagel. Выделите объект Cagel и нажмите клавишу F9 для перехода в режим редактирования подобъектов. Теперь перемещение любой из вершин приведет к изменению формы обеих половин сглаженного куба. Используйте клавишу z для возвращения объекта в исходное состояние.
Выделите объект SmoothMirror и поместите его в слой SmoothL.
При работе с каркасом объекта Cagel, окружающим сглаженный куб, можно случайно выделить последний. В Maya имеется возможность перевода слоев в режим Reference (Ссылочный), в котором объекты не меняют своего вида, но вы теряете возможность их выделить. В редакторе слоев выделите слой SmoothL и дважды щелкните на расположенном слева от имени слоя квадратике. Произойдет циклический переход между тремя режимами — обычным, Template (Шаблон) и Reference (Ссылочный). В квадратике появится буква R, как показано на Рисунок 7.5. Режимы, отличные от нормального, характеризуются тем, что расположенные в слое объекты невозможно редактировать и выделять. В режиме Template (Шаблон) вы теряете также возможность использовать объекты слоя в качестве привязки.
Итак, все готово для начала моделирования монстра. Сохраните сцену под именем SubDemuSetup.
Буква R говорит о
h2>
Рисунок 7.5. Буква R говорит о том, что объекты данного слоя невозможно выделять и редактировать

Центральная нижняя
Рисунок 7.9. Центральная нижняя вершина внешнего кольца была вдавлена вовнутрь, чтобы получить небольшую впадину под глазом
Сглаженный куб окруженный каркасом
Рисунок 7.1. Сглаженный куб, окруженный каркасом, предназначенный для эмуляции инструмента
Нажмите комбинацию клавиш Ctrl+a, чтобы открыть окно диалога Attribute Editor (Редактор атрибутов), перейдите на вкладку polySmoothFacel и убедитесь, что у вас снят флажок Keep Border (Сохранять границу), как показано на Рисунок 7.2. Закройте редактор атрибутов.
Создание черт лица
Создание черт лица
Одной из наиболее важных задач при моделировании лиц людей является создание глаз. Именно этим вам предстоит заняться в процессе выполнения следующего упражнения. Помните, что именно глаза позволяют выразить эмоциональный настрой персонажа и сделать его живым.
Создание головы монстра
Создание головы монстра
Перед началом моделирования головы монстра нужно создать ее предварительный набросок на бумаге. Обычно желательно создать изображения в фас и профиль. В этом случае вам не придется импровизировать, что позволяет сэкономить массу времени.
Примечание
ПРИМЕЧАНИЕ
Если отсканировать наброски рисунка, их можно использовать в качестве плоскостей изображения, то есть растровых изображений, связанных с ортогональными проекциями. Например, профиль монстра можно связать с окном проекции Side (Вид сбоку).
Перед загрузкой отсканированных изображений монстра (анфас и профиль) нужно убедиться, что они имеют необходимый размер. Проекции Front (Вид спереди) и Side (Вид сбоку) должны быть соразмерны. В этом случае появляется возможность переключаться между этими двумя проекциями и использовать их для моделирования персонажа. Если иметь это в виду при подготовке рисунков, процесс их сканирования упрощается. При наличии сомнений в соответствии размеров можно воспользоваться одним из редакторов графических изображений, например Photoshop. Для этой главы мы поделили изображение на несколько частей: лицо, руки, ноги и туловище. Вам остается только загрузить соответствующие рисунки и смоделировать нужную часть тела.
Формирование глазных впадин
Упражнение. Формирование глазных впадин
Продолжите выполнение предыдущего упражнения. В процессе создания базовой формы головы вы должны были добавить ребра к ее верхней части, как показано на Рисунок 7.8. Они являются идеальной отправной точкой для формирования линии бровей.
Существует два метода создания глазных впадин. Можно воспользоваться инструментом Bevel (Скос), сэкономив при этом время, или же применить описанный ниже метод, который хотя и является более трудоемким, зато всегда дает хороший результат, так как предоставляет более детальный контроль над происходящим. В этом упражнении вам предстоит расщепить полигон, формирующий линию бровей, для получения возможности создания отверстия.
Выделите объект Cagel и в окне проекции Perspective (Перспектива) измените масштаб изображения таким образом, чтобы ясно видеть область глаз. Откройте окно диалога Tool Settings (Параметры инструмента) для инструмента Split Polygon (Разбиение полигонов) и снимите флажок Edge Snapping (Привязка к ребрам). Сформируйте новое ребро, соединив по диагонали две вершины. Затем создайте еще одно ребро, по диагонали соединяющее две другие вершины. При этом необходимо будет получить три новые вершины вместо двух, потому что новая диагональ пересекает предыдущую.
Формирование головы
Упражнение. Формирование головы
Продолжите выполнение предыдущего упражнения.
Откройте окно диалога ToolSettings (Параметры инструмента), щелкнув на квадратике, расположенном справа от команды Split Polygon (Разбиение полигонов) контекстного меню, вызываемого с помощью клавиатурной комбинации Alt+x. Введите в поле Snapping Tolerance (Устойчивость привязки) значение 50, и закройте окно диалога.
Подготовка к моделированию
Упражнение. Подготовка к моделированию
Прежде всего вспомним о том, что в начале работы над текущей сценой, в главе 5, мы упростили интерфейс программы, оставив только командную строку и строку подсказки. Если вы пропустили указанные упражнения, нужно будет загрузить пользовательские контекстные меню и клавиатурные комбинации. Начнем работу с пустой сцены. Сделайте на время видимой строку состояния, выбрав в меню оперативного доступа команду Display > UI Elements > Status Line (Отображение > Элементы интерфейса > Строка состояния), и убедитесь, что у вас нажата кнопка Construction History (История создания). В активном состоянии эта кнопка помечена значком свитка. Если она не нажата, свиток перечеркнут красным крестом.
Начните новый проект, выбрав в меню оперативного доступа команду File > Project > New (Файл > Проект > Создать). В поле Name (Имя) введите имя Creature, нажмите кнопку Use Defaults (По умолчанию), чтобы использовать заданную по умолчанию папку, и нажмите кнопку Accept (Принять).
Выберите в меню оперативного доступа команду Panels > Saved Layouts > Persp/ Outliner (Панели > Варианты компоновки > Перспектива/Структура) для перехода к наиболее удобному в данной ситуации представлению.
Первым объектом сцены является полигональный примитив Cube (Куб). Для его создания выберите в контекстном меню, вызываемом с помощью клавиатурной комбинации Ctrl+x, команду Cube ( Куб). Созданный объект по умолчанию имеет имя pCubel. В режиме формы, как легко увидеть в окне каналов, этот объект имеет название pCubeShapel.
Теперь нужно соединить атрибут OutMesh (Выходные параметры сетки) формы pCubeShapel с атрибутом InMesh (Входные параметры сетки) еще одного куба. Это делается с помощью специального сценария. Убедитесь, что объект pCubel по-прежнему выделен, и нажмите клавишу (обратный апостроф), расположенную над клавишей Tab, введите в командной строке polyDuplicateAndConnect и нажмите клавишу Enter. В результате выполнения этой команды в сцене появится еще один куб, имеющий имя pCube2.
Сейчас удобнее будет работать в режиме каркасного отображения. Для перехода к нему нажмите клавишу 4. В контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+x, выберите команду Smooth (Сглаживание). В итоге внутри каркаса куба появится сглаженный куб, как показано на Рисунок 7.1.
Примечание
ПРИМЕЧАНИЕ
Существует несколько способов сглаживания полигональной формы. В этом упражнении сглаживание происходит за счет появления новых граней. Второй метод состоит в увеличении числа вершин. При этом не происходит изменения топологии объекта. Данный метод позволяет получить проекционные координаты, с которыми проще всего работать. Кроме того, сгладить форму можно с помощью инструмента Sculpt Polygon Tool (Создание рельефа на полигональной поверхности).
Размещение глазных яблок
Упражнение. Размещение глазных яблок
Продолжите выполнение предыдущего упражнения. В качестве глазного яблока будет выступать обычная сфера. Перемещая ее вершины, вы наилучшим образом приведете ее размер в соответствие с размером глазной впадины.
Выберите в контекстном меню, вызываемом с помощью комбинации клавиш Ctrl+z, команду Sphere (Сфера). Присвойте появившемуся объекту имя LeftEye.
С помощью преобразования Scale (Масштабировать) придайте сфере требуемый размер. Монстр-пришелец должен иметь большие глаза, поэтому введите в поля данного преобразования в окне каналов значение 1,112. Поместите сферу за правыми веками. Это проще всего сделать в окне проекции Side (Вид сбоку), как показано на Рисунок 7.12. Постарайтесь поместить сферу настолько близко к границе век, насколько это возможно.
Теперь нужно переместить вершины век таким образом, чтобы они идеально прилегали к поверхности глазного яблока. Другими словами, следует устранить зазоры между глазным яблоком и веками. Этот процесс требует довольно значительных временных затрат, но без него не обойтись. По очереди выделяйте вершины и перемещайте их, пока они не окажутся на поверхности глазного яблока. Увеличьте масштаб изображения и перейдите в режим тонированной раскраски, как показано на Рисунок 7.13. В этом случае вам будет проще обнаружить наличие зазоров.
Щелкните на квадратике, расположенном справа от команды Duplicate (Дублировать) меню Edit (Правка), выберите в меню появившегося окна диалога команду Reset Settings (Сбросить настройки) и нажмите кнопку Duplicate (Дублировать). Затем измените значение параметра Translate X (Смещение по оси X) с положительного на отрицательное. Присвойте копии имя RightEye.
Создание носа
Упражнение. Создание носа
Продолжите выполнение предыдущего упражнения. Создание носа — не очень сложная задача. Нужно всего лишь несколько раз выполнить операцию выдавливания и затем переместить некоторые вершины.
В центральной части лица расположена полигональная грань, которая идеально подходит для формирования носа. Щелкните правой кнопкой мыши на объекте Cagel и выберите в появившемся меню вариант Face (Грани). Выделите указанную грань. В контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+x, выберите команду Extrude Face (Выдавить грань). Переместите грань вдоль оси Z примерно на 0,1 единицы. Отследить величину выдавливания можно в строке подсказки. В результате будут сформированы четыре новые грани, причем грань, образовавшаяся на линии симметрии, является явно лишней. Нажмите клавишу q для перехода в режим выделения объектов, щелкните на этой грани и нажмите клавишу Delete.
Снова выделите грань, формирующую нос, и примените к ней операцию выдавливания. На этот раз немного уменьшите размер грани по оси Y (для этого нужно переместить зеленый кубик) и снова приподнимите над исходной поверхностью. Избегайте перемещений по оси X, так как это приведет к разделению двух половин сглаженного куба. Удалите грань, расположенную на линии симметрии, как вы уже делали в предыдущем шаге.
Повторите операцию, описанную в шаге 2, с новой гранью.
Опять выделите полученную грань, но на этот раз совсем не перемешайте ее а просто еще немного уменьшите ее размер относительно оси Y. В данном случае не нужно удалять грань, расположенную между сглаженными полови нами. Формирование горбинки на носу завершено.
Выделите верхнюю грань в последний раз и уменьшите ее размер относительно оси Y на несколько процентов, затем немного вдавите вовнутрь, формируя носовую полость, как показано на Рисунок 7.11.

Рисунок 7.11. Верхняя грань была уменьшена в размере относительно оси Y и слегка вдавлена вовнутрь
Переключитесь в режим выделения вершин и переместите их, чтобы придать носу желаемую форму. Мы переместили нижние вершины носа ближе к лицу, а верхние вершины слегка приподняли.
Создание основных блоков
Упражнение. Создание основных блоков
Продолжите выполнение предыдущего упражнения.
Откройте окно диалога Outliner (Структура) и выделите каркас и две сглаженные формы. В окне проекции Side (Вид сбоку) переместите кубы в основании шеи, так как именно отсюда мы начнем построение головы. Затем выделите объект Smooth и в разделе Inputs (Входные данные) окна каналов введите в поле Divisions (Разбиения) значение 2.
Примечание
ПРИМЕЧАНИЕ
При моделировании персонажей модель получается более аккуратной, если увеличить значение параметра Divisions (Разбиения). Но при этом возникает пара проблем. Во-первых, у компьютера может оказаться недостаточно ресурсов для вычисления формы объектов, что сильно замедлит и затруднит работу со сценой. Во-вторых, плотная сетка, образовавшаяся из-за большого числа разбиений, мешает видеть каркас, редактированием которого вы занимаетесь. Однако в любой момент можно снова уменьшить число разбиений.
Иногда может быть полезным сделать слой, содержащий сглаженный объект, невидимым, потому что иначе интерактивное обновление объекта в процессе его редактирования происходит намного медленнее.
Начнем выдавливать грани объекта Cagel, формируя голову. Выделите этот объект в окне диалога Outliner (Структура), щелкните на нем правой кнопкой мыши и выберите в появившемся контекстном меню команду Face (Грань). Выделите верхнюю грань куба и выберите в контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+x, команду Extrude Face (Выдавить грань). После появления управляющих векторов можно изменить масштаб, ориентацию и положение грани, предназначенной для выдавливания. В процессе этих преобразований следите, чтобы не сдвигать грань вдоль оси X, потому что это приведет к ее отделению от зеркальной копии. В данном случае достаточно ввести значение 0,5 в поле Translate Y (Смещение по оси Y) окна каналов.
Повторите команду Extrude Face (Выдавить грань), нажав клавишу g, и переместите новую грань на две единицы в том же направлении, что и в шаге 2. Затем проделайте это еще раз, переместите верхнюю грань уже на 4 единицы, чтобы получить в результате объект.
В окне проекции Perspective (Перспектива) легко заметить, что в результате выдавливания были получены две отдельные колонны, выходящие из основания куба. Дело в том, что в процессе выдавливания граней две половины сглаженного куба не были соединены между собой. Эту проблему легко решить, но для начала нужно убрать плоскости изображения. Выберите в меню оперативного доступа команду Show\Cameras (Показать > Камеры). После удаления камер из сцены плоскости изображения станут невидимыми. Теперь можно легко выделить боковые грани выдавленного объекта Cagel, так как вы пока не вышли из режима редактирования подобъектов. По очереди выделите каждую из трех граней, образовавшуюся между выдавленными копиями, и нажмите клавишу Delete. С каждым удалением колонны будут становиться ближе друг к другу.
Теперь нужно выделить грани на передней стороне куба и выдавить их таким образом, чтобы формируемая поверхность достигла лица монстра. В данный момент объект Cagel поделен на четыре части. В окне проекции Perspective (Перспектива) выделите передние грани двух верхних частей. Выдавите их примерно на три единицы в положительном направлении оси Z. Перейдите в окно проекции Side (Вид сбоку) и повторите операцию выдавливания указанных граней, сместив их вдоль оси Z еще на 1,7 единицы. Итак, у нас образовались еще две части.
В окне проекции Perspective (Перспектива) удалите грани между двумя частями сглаженного куба, используя методику, описанную в шаге 4. Для упрощения этого процесса скройте сглаженный объект, щелкнув на квадратике с буквой V, расположенном слева от имени слоя Smooth!.. Помните, что для выделения грани достаточно щелкнуть на расположенном в ее центре маркере выделения.
Создание рта
Упражнение. Создание рта
Продолжите выполнение предыдущего упражнения. Для создания ротового отверстия применяется та же методика, что и в предыдущем упражнении. Нужно создать набор граней, которые затем можно удалить. С помощью опорных рисунков в окнах проекции Front (Вид спереди) и Side (Вид сбоку) рту придается нужная форма.
Откройте окно диалога Tool Settings (Параметры инструмента) для инструмента Split Polygon (Разбиение полигонов) и снимите флажок Edge Snapping (Привязка к ребрам). Создайте вертикальное ребро, соединяющее нижнюю границу подбородка с одним из углов рта. Затем в соответствии с рисунком создайте горизонтально расположенное ребро, проходящее под верхней губой.
Теперь, создайте ребра, огибающие область рта. Они должны быть параллельны верхней и нижней губам. По очереди щелкните на каждом из 13 ребер и нажмите клавишу Enter.
Теперь осталось создать горизонтальное ребро на верхней части нижней губы. Это завершит создание группы граней, которую можно будет удалить для создания ротового отверстия. С помощью инструмента Split Polygon (Разбиение полигонов) нарисуйте горизонтальную линию, проходящую от передней части лица до вертикальной линии, расположенной на границе нижней губы.
Щелкните правой кнопкой мыши на объекте Cagel и выберите в появившемся меню вариант Face (Грани). Выделите грани, образующие ротовую полость, и нажмите клавишу Delete.
Для создания линии губ нужна горизонтальная грань, расположенная в углу рта. Это станет отправной точкой для формирования губ.
Формирование губ требует создания дополнительных ребер. Обведите линию губ тремя линиями ребер.
Используя методы, описанные в предыдущем упражнении, сформируйте губы. Внешнее кольцо ребер используется в качестве нижней точки губ, следующие два кольца определяют их ширину, а внутреннее кольцо необходимо немного вдавить внутрь рта, чтобы завершить формирование губ, как показано на Рисунок 7.10.
Создание симметричного объекта
Упражнение. Создание симметричного объекта
Продолжите выполнение предыдущего упражнения. После перехода в режим тонированной раскраски теряется возможность видеть объект pCube2, так как он расположен внутри объекта pCubel, имеющего видимую поверхность.
Откройте окно каналов, нажав комбинацию клавиш Shift+C. Создайте два новых слоя с именами CageL и SmoothL. В первый поместите объект pCubel, а во второй — объект pCube2.
Выделите объект pCubeZ в окне диалога OutUner (Структура) и присвойте ему имя Smooth, затем выделите объект pCubel и присвойте ему имя Cagel. Откройте редактор атрибутов, нажав комбинацию клавиш Ctrl+a, и перейдите на вкладку CageL В разделе Drawing Override Options (Параметры замены на рисунке) оставьте только флажки Enable Override (Замена разрешена) и Visible (Видимый). Теперь внешний куб при любом режиме отображения в окнах проекции будет представлен в виде каркаса, но при этом никогда не появится после визуализации.
Для создания левой половины персонажа нужно получить копию куба. Сначала сместим куб вправо, так как он является основой для правой половины будущей фигуры. Выделите в окне диалога Outliner (Структура) объекты Cagel и Smooth и введите в поле Translate X (Смещение по оси X) окна каналов значение 0,5.
Теперь нужно удалить поверхность, по которой впоследствии будет происходить состыковка двух симметричных половин. Выделите объект Cagel, щелкните на нем правой кнопкой мыши и выберите в появившемся контекстном меню команду Face (Грань). В центре каждой из граней куба появятся голубые маркеры выделения. Щелкните на маркере, расположенном ближе всего к началу координат стороны куба, и нажмите клавишу Delete. В результате сглаженный куб будет открыт с одной стороны. Нажмите F8 для выхода из режима редактирования подобъектов.
Опорная точка в данном случае смещена относительно начала координат и центрирована между двумя созданными объектами. Так как вы собираетесь продублировать и отразить объект Smooth, нужно переместить его опорную точку на поверхность, которая будет служить плоскостью отражения. Перейдите в окно проекции Тор (Вид сверху) и нажмите клавишу w, чтобы активизировать инструмент Move (Переместить), а затем клавишу Insert для перехода в режим редактирования опорной точки. Переместите опорную точку в начало координат при нажатой клавише х, чтобы осуществить привязку к узлам сетки. Когда опорная точка окажется на нужном месте, еще раз нажмите клавишу Insert. Затем повторите описанную процедуру для объекта Smooth.
Убедитесь, что объект Smooth выделен, и вызовите окно диалога Duplicate Options (Параметры дублирования). Для этого нужно щелкнуть на квадратике, расположенном справа от команды меню оперативного доступа Edit > Duplicate (Правка > Дублировать). Выберите в меню Edit (Правка) появившегося окна диалога команду Reset Settings (Сбросить настройки) и затем введите в поле Scale X (Масштабирование по оси X) значение -1 и нажмите кнопку Duplicate (Дублировать). В результате появятся два видимых объекта, формирующих капсулу. Присвойте копии имя Smooth Mirror. Но если в данный момент попытаться отредактировать исходный сглаженный куб, его зеркальная копия не будет изменяться, так как пока что эти две половины никак не связаны.
Выберите в меню оперативного доступа команду Window > General Editors > Connection Editor (Окно > Редакторы общего назначения > Редактор связей).
Щелкните правой кнопкой мыши на пустом пространстве окна диалога Outliner (Структура) и выберите в появившемся контекстном меню команду Show Shapes (Показ форм). Затем щелкните на квадратиках со знаком «плюс», расположенных слева от имен Smooth и SmoothMirror, чтобы раскрыть соответствующие ветви, как показано на Рисунок 7.3.
Загрузка опорных изображений
Упражнение. Загрузка опорных изображений
Продолжите выполнение предыдущего упражнения.
Перейдите к четырехоконной конфигурации и сделайте активным окно проекции Front (Вид спереди). Выберите в меню оперативного доступа команду View > Image Plane > Import Image (Вид t Плоскость изображения > Импорт изображения).
Откройте окно диалога Attribute Editor (Редактор атрибутов) для объекта ImagePlanel. Для этого выберите в меню оперативного доступа команду View > Image Plane > Image Plane Attributes > imagePlanel (Вид > Плоскость изображения > Атрибуты плоскости изображения > imagePlanel). Присвойте объекту imagePlanel имя FrontFace.
В разделе Placement Extras (Дополнительные возможности размещения), показанном на Рисунок 7.6, введите в поля Width (Ширина) и Height (Высота) значение 7,5. Убедитесь, что значение параметра Offset (Смещение) равно нулю по обеим координатам. Значения параметров Coverage Origin X (Смещение с масштабированием по X) и Coverage Origin Y (Смещение с масштабированием по Y) также должны быть равны нулю.
Перейдите в окно проекции Side (Вид сбоку) и повторите процедуру, описанную в первом шаге, для загрузки файла FaceProfile.bmp. Присвойте ему имя SideFace и измените размеры с помощью описанной выше процедуры.
Выберите в меню оперативного доступа команду Panels > Layouts > Three Panes Split Right (Панели > Компоновка > Две панели из трех находятся справа).
Предварительная подготовка к моделированию монстра закончена.
Совет
СОВЕТ
В нижней части окна диалога Attribute Editor (Редактор атрибутов) находится кнопка Copy Tab (Копировать окно), которая отсутствовала в предыдущих версиях программы. Ее нажатие приводит к появлению плавающего окна с параметрами определенного элемента сцены. Соответственно, появилась возможность открыть окно диалога Attribute Editor (Редактор атрибутов) для другого элемента сцены и сравнить параметры.
в виду, что команды языка
ВНИМАНИЕ
Имейте в виду, что команды языка MEL чувствительны к регистру букв. Даже небольшая опечатка приводит к тому, что команда не выполняется. Если правая сторона командной строки становится красной и в ней появляется слово Error, значит, команда была введена неверно. В этом случае введенный текст не исчезает, что дает возможность исправить ошибку синтаксиса.
В разделе Inputs (Входные данные) окна каналов можно изменить значение параметра Divisions (Разбиения), от величины которого зависит степень сглаживания объекта. Посмотрите на результаты его изменения и верните параметру исходное значение.
в формате BMP не следует
ВНИМАНИЕ
При сохранении изображения в формате BMP не следует использовать режим сжатия, так как его будет невозможно распознать в Maya.
в меню оперативного доступа команду
ВНИМАНИЕ
Перейдите в окно проекции Front (Вид спереди), выберите в меню оперативного доступа команду View > Image Plane > Image Plane Attributes > FrontFace (Вид > Плоскость изображения > Атрибуты плоскости изображения > Front-Face) и укажите правильный маршрут в поле Image Name (Имя изображения). Туже самую операцию нужно повторить с окном проекции Side (Вид сбоку), выбрав вместо имени FrontFace имя FaceProfile.
что для получения возможности выделения
ВНИМАНИЕ
Помните, что для получения возможности выделения объектов необходимо выйти из режима редактирования подобъектов, нажав клавишу F8.
Выберите в меню оперативного доступа команду Panels > Saved Layouts > Four View (Панели > Варианты компоновки > Четырехоконное представление). В данный момент активен инструмент Split Polygon (Разбиение полигонов). Нарисуйте горизонтальную линию примерно на уровне глаз монстра, по очереди щелкая на каждом из ребер. Она должна соответствовать верхней линии объекта. Обратите внимание, что если после щелчка некоторое время удерживать кнопку мыши и затем слегка переместить указатель, точка появится в месте расположения ближайшей мишени привязки. После того как последняя точка окажется на нужном ребре, нажмите клавишу Enter, чтобы завершить создание новой грани.
Примечание
ПРИМЕЧАНИЕ
Обратите внимание, что нажатие клавиши Enter, завершающее процесс создания новой грани, приводит к автоматическому выходу из режима редактирования подобъектов.
Снова щелкните на квадратике, расположенном справа от команды Split Polygon (Разбиение полигонов) контекстного меню, вызываемого с помощью клавиатурной комбинации Alt+x, и введите в поле Snapping Magnets (Мишени привязки) значение 3, так как теперь нужно нарисовать еще одну горизонтальную линию, расположенную ниже первой. При ее создании используйте нижнюю из трех точек привязки, доступных в данном случае. создание головы MUHtipd
Примечание
ПРИМЕЧАНИЕ
Как видите, иногда требуется увеличить значение параметра Snapping Magnets (Мишени привязки), чтобы поместить точку в нужное место. К примеру, если величина этого параметра равняется четырем, у вас есть четыре возможные точки привязки. К этому приему часто приходится прибегать для создания областей рта, бровей, подбородка и т. п. Для получения возможности размещения точек привязки в произвольном месте объекта снимите флажок Edge Snapping (Привязка к ребрам) в окне диалога Toot Settings (Параметры инструмента) инструмента Split Polygon (Разбиение полигонов).
Щелкните правой кнопкой мыши на объекте Cagel и выберите в появившемся контекстном меню вариант Vertex (Вершина). Выберите в меню оперативного доступа команду Show > Cameras (Показать > Камеры), чтобы сделать видимыми плоскости изображения. Используя окна проекции Front (Вид спереди) и Side (Вид сбоку), выделяйте вершины по одной или группами и перемещайте их таким образом, чтобы получить форму, напоминающую человеческую голову. Помните, что для выделения групп вершин можно использовать также инструмент Lasso (Лассо). Пытайтесь перемещать вершины целыми рядами, чтобы сохранить их выравнивание. Благодаря этому достаточно легко удастся сохранить простоту модели, что впоследствии даст возможность без проблем ее анимировать.
ВНИМАНИЕ
Сохраняйте основание шеи плоским, избегая перемещения формирующих — его вершин в направлении оси Y. В дальнейшем вам предстоит сформировать тело из шеи с помощью инструмента Extrude (Выдавливание), и если вершины не будут лежать в одной плоскости, то придется менять их положение.
Теперь пришло время придать шее небольшую округлость. Снова воспользуйтесь инструментом Split Polygon (Разбиение полигонов) и создайте дополнительные ребра, идущие от нижней части шеи к макушке головы. Когда формирование дополнительных ребер будет закончено, щелкните правой кнопкой мыши на объекте Cagel и выберите в появившемся меню команду Vertex (Вершины). Затем, выделяя вершины в окне проекции Side (Йид сбоку), перемещайте их в сторону внешнего края рисунка, стараясь придать объекту нужную форму.
Граница слияния двух сглаженных кубов имеет довольно резкие очертания, то есть у нас имеется шов, вертикально соединяющий обе половины лица, что выглядит не очень хорошо. Для решения этой проблемы перейдите в окно проекции Perspective (Перспектива), откройте окно диалога Tool Settings (Параметры инструмента) для инструмента Split Polygon (Разбиение полигонов), сделайте параметр Snapping Magnets (Мишени привязки) равным 3 и нарисуйте линию, как показано на Рисунок 7.7.
Продолжите перемещение вершин, стараясь добиться совпадения формы объекта с опорным рисунком. Важно добиться округлости таких элементов, как лоб, задняя часть черепа и челюсть.
Добившись максимального сходства с предложенной формой, сохраните сцену под именем HeadShell.
Итак, вы придали голове модели базовую форму. Теперь пришло время заняться формированием более мелких деталей. Основным принципом вашей работы должно быть сохранение простоты модели. Ведь это упростит и ее дальнейшее редактирование.

Рисунок 7.7. Создав дополнительные ребра вдоль центральной линии объекта, вы получите возможность сгладить границу слияния двух половин
Выровненные ребра в месте создания глазных впадин
Рисунок 7.8. Выровненные ребра в месте создания глазных впадин
Теперь разделите грань, расположенную на месте будущей глазной впадины, еще на четыре части, используя вышеописанный метод. В результате нужно получить восемь граней, соединяющихся в одной точке.
С помощью инструмента Split Polygon (Разбиение полигонов) необходимо разбить все созданные ребра таким образом, чтобы сформировать основу для будущего отверстия. Первую вершину лучше всего разместить в том месте, где будет располагаться ближайший к носу угол. Активизируйте инструмент Split Polygon (Разбиение полигонов) и создайте по одной вершине на каждом из восьми ребер, формируя отверстие. Последняя вершина должна совпадать с первой.
Щелкните правой кнопкой мыши на любом из ребер, выберите команду Face (Грани) и по очереди выделите все восемь граней, попадающих в центр созданной вами замкнутой области. Это делается щелчками на расположенных в центре каждой грани маркерах при нажатой клавише Shift. Удалите их, нажав клавишу Backspace. Временно сделайте видимым слой SmoothL, чтобы посмотреть, как выглядит отверстие с другой стороны головы.
Сформируем дополнительные ребра. Снова установите флажок Edge Snapping (Привязка к ребрам) в окне диалога Tool Settings (Параметры инструмента) для инструмента Split Polygon (Разбиение полигонов). Обратите внимание, что разбиению подвергаются грани, расположенные рядом с гранями, формирующими глазную впадину.
Щелкните правой кнопкой мыши на любом из ребер объекта Cagel, выберите в появившемся меню команду Edge (Ребра) и затем по очереди щелкните на каждом из ребер, окружающих глазную впадину, при нажатой клавише Shift. Выделив все ребра, используйте инструмент Scale (Масштабировать) для придания отверстию нужных пропорций. Таким способом можно создать как модель человека, так и совершенно не похожего на людей инопланетянина. Затем переместите их в отрицательном направлении оси Z таким образом, чтобы они совпали с изображением глаз на опорном рисунке.
Выберите в меню оперативного доступа команду Shading > Shade Options к X-Ray (Затенение > Параметры затенения > Рентген). Это сделает поверхность сглаженного объекта полупрозрачной и облегчит процесс придания глазу требуемой формы. Создайте еще восемь ребер, расположив их по периметру глазного отверстия. Повторите эту операцию еще раз. В итоге глаза должны быть обведены двумя кругами. Новые ребра будут использованы для создания складок кожи вокруг глаз.
Пришло время переместить каждый из трех наборов вершин. Обратите внимание, что глазное яблоко создано двумя ближайшими к нему вершинами каркаса, а внешнее кольцо ребер немного вдавлено вовнутрь, чтобы сделать глаз слегка выпуклым. Выделите все вершины внутреннего кольца и переместите их в отрицательном направлении оси Z примерно на 0,1 единицы. После перемещения внутреннее кольцо вершин должно оказаться на линии соприкосновения глазного яблока с веками. Вы можете также перемещать их вдоль других осей, чтобы добиться наилучшего совмещения с опорным рисунком. Затем нужно по одной переместить вершины среднего кольца, расположив их практически перед внутренним кольцом. Наконец, отрегулируйте положение вершин внешнего кольца, формируя еще одно углубление. Слегка вдавите верхнюю и нижнюю центральные вершины, чтобы получить небольшие вмятины, как показано на Рисунок 7.9.
Вы смоделировали базовую форму глазных впадин, но, скорее всего, она не совпадает с тем, что вы ожидали увидеть. Продолжайте перемещать вершины и ребра, чтобы получить требуемый результат. Затем сохраните сцену под именем HeadEye.
Завершающие штрихи
Завершающие штрихи
Теперь осталось совсем немного, и голова монстра будет полностью готова. Можно найти много областей, в которых желательно еще немного переместить вершины, чтобы добиться более полного сходства модели с первоначальным рисунком. Мы добавили выступающий лоб, как у неандертальца, и слегка расщепили подбородок. Теперь осталось только создать глазные яблоки и совместить их размер с размером глазных впадин. Этим мы и займемся в последнем упражнении данной главы.
Продвинутая 3D графика в пакете Maya
Анизотропная раскраска
Анизотропная раскраска
Этот метод раскраски позволяет имитировать несимметричные блики на поверхности материалов и управлять ориентацией этих бликов. Объекты с множеством параллельных микрожелобков, например полированный металл, отражают свет в зависимости от направления этих желобков по отношению к наблюдателю. Анизотропная раскраска идеально подходит для имитации таких материалов, как волосы, перья, полированный металл и атласная ткань.
Добавление текстур к базовым материалам
Добавление текстур к базовым материалам
Теперь вы уже имеете представление о способе назначения текстур и их размещения на поверхностях объектов. В следующем упражнении вам предстоит использовать свои знания для назначения текстур базовым материалам, созданным для различных элементов дома.
Другие варианты
Другие варианты
Четыре оставшихся типа материалов используются в более сложных случаях, которые мы перечислим в этом разделе. Многослойная раскраска (layered shader) позволяет скомбинировать несколько материалов в один. Например, если нужно получить хромовые пятна на деревянной поверхности, используйте карту-маску для хромовых пятен.
Карта затенения (shading map) является цветовой картой, назначаемой поверхностям после их визуализации, например для создания эффекта мультфильма и других не-фотореалистичных эффектов.
Раскраска поверхности (surface shader) используется для настройки цвета материала, его прозрачности и эффекта сияния. Этот тип раскраски можно связать с положением объекта, и в результате материал будет менять цвет при движении объекта.
Тип раскраски Use Background (Использовать фон) вырезает «дыру» в альфа-канале изображения в местах, где появляется объект с материалом данного типа. Этот прием используется при создании комбинированной анимации из отдельных визуализированных изображений с помощью специальных программ, информацию о которых можно найти в главе 14. Аниматоры обычно применяют подобные приемы для разделения сложных сцен на более простые, а также для комбинирования трехмерной анимации с обычным кинофильмом.
Дублирование материалов
Дублирование материалов
Существует возможность создания нового материала на основе уже существующего. Этот процесс начинается с дублирования материалов.
Выделите в окне диалога Hypershade (Редактор узлов) материал gold и нажмите комбинацию клавиш Ctrl+d, чтобы получить его копию. Новый материал будет называться goldl.
В окне диалога Attribute Editor (Редактор атрибутов) присвойте новому материалу имя chrome. Щелкните на поле образца цвета, расположенном справа от имени параметра Color (Цвет), и введите в поле Hue (Цветовой тон) значение 240. Ползунок параметра Specular Color (Цвет зеркальных бликов) сдвиньте до отказа вправо, чтобы сделать цвет зеркальных бликов чисто-белым. Материал приобретет вид металла с синеватым отливом. Сделайте значение параметра Reflectivity (Отражательная способность) равным 0,85 и назначьте полученный материал большой сфере. Визуализируйте сцену в окне проекции Perspective (Перспектива). Поверхность сферы будет как зеркало отражать окружающие предметы.
Результат визуализации выглядит слегка расплывчатым в местах расположения предметов, отражающих и преломляющих лучи света. Это связано с тем, что для ускорения процесса визуализации качество итогового изображения было занижено. Чтобы сделать его приемлемым, откройте окно диалога Render Globals (Общие параметры визуализации) и в раскрывающемся списке Presets (Предустановленные значения) раздела Anti-Aliasing Quality (Качество сглаживания) выберите вариант Production Quality (Высокое качество), как показано на Рисунок 8.8. Также имеет смысл увеличить разрешение, которое в текущий момент равно всего 320x240 пикселов. В раскрывающемся списке Presets (Предустановленные значения) раздела Resolution (Разрешение) выберите вариант Full 1024, что приведет к появлению изображения с разрешением 1024x768 пикселов. Теперь процесс визуализации будет отнимать больше времени, но результат того стоит! Чтобы посмотреть изображение в его оригинальном масштабе, нажмите кнопку 1:1 на панели инструментов окна диалога Render View (Визуализатор).

Рисунок 8.8. Изменение качества итогового изображения в окне диалога Render Globals
Двумерные карты текстур
Двумерные карты текстур
Двумерные процедурные карты текстур в Maya делятся на две категории: карты с повторяющимся рисунком и карты со случайным рисунком. К первым относятся Grid (Решетка), Checker (Шахматное поле), Bulge (Выпуклости), Cloth (Ткань) и Ramp (Линейный градиент). С помощью этих карт можно создать рисунок кирпичной стены, черепицы и других материалов с периодической структурой, созданных руками человека. В число карт со случайным рисунком входят Fractal (Фрактал), Mountain (Горы), Noise (Шум) и Water (Вода). На основе этих псевдослучайных текстур удобно создавать имитацию природных поверхностей.
Интерактивное размещение текстуры
Интерактивное размещение текстуры
Проще всего редактировать положение текстуры непосредственно на поверхности объекта. Поэтому в Maya существует возможность интерактивного размещения текстуры. Благодаря этой функции можно наблюдать, как выглядит рисунок по мере перемещения, поворота и масштабирования управляющих векторов положения текстуры. Осуществить интерактивное размещение текстуры можно только в случае, если хотя бы для одного из окон проекции включено аппаратное размещение текстур. Выберите в меню оперативного доступа команду Shading > Hardware Texturing (Затенение > Аппаратное наложение текстур) или нажмите клавишу 6. Эта даст вам возможность увидеть результат назначения карты текстуры непосредственно в окне проекции.
Использование окна диалога Hypershade
h2>Создание материалов. Моделирование внешнего вида поверхности с нуля.
Использование карт текстуры. Замена однородного цвета материала рисунком.
Процедурные карты текстуры. Замена однородного цвета материала текстурой, созданной на основе математических формул.
Карты рельефа. Метод создания иллюзии наличия рельефа с помощью карт текстуры.
Назначение карт различным характеристикам материала. Карты текстуры позволяют менять цвет или другую характеристику материала при перемещении от одной точки поверхности к другой.
Ключевые термины
Материалы (Materials). Определенный набор характеристик, присваиваемый поверхности геометрической модели для придания ей сходства с поверхностью реального объекта.
Раскраска (Shader). Имитация свойств материала, различающаяся по способу отображения зеркальных бликов.
Редактор узлов (Hypershade). Редактор материалов в Maya.
Карта текстуры (Texture map). Двумерный рисунок, назначаемый плоской поверхности. Обычно это растровое изображение, например снимок волокон древесины, которое может повторяться требуемое количество раз.
Проекционные координаты (UV coordinates). Система координат поверхности трехмерного объекта, необходимая для корректного размещения на ней текстуры. Объекты могут иметь несколько наборов проекционных координат.
Карты текстуры внешней среды (Environmental textures). Карты текстуры, учитываемые при формировании цвета зеркального отражения и цвета прозрачности.
Объемный материал (Volumetric material). Тип материала, применяемый для имитации таких объектов, как пар, дым, пыль или облака.
Процедурные текстуры (Procedural textures). Двумерные или трехмерные текстуры, создаваемые на основе математических формул.
Карта рельефа (Bump map). Применение карты текстуры для придания поверхности объекта видимости трехмерных неровностей.
Раскраска по Фонгу (Phong shader). Тип раскраски с большими и яркими зеркальными
бликами.
Раскраска по Ламберту (Lambert shader). Тип раскраски без зеркальных бликов.
Раскраска по Блинну (Btinn shader). Тип раскраски с более округлыми и менее яркими зеркальными бликами, чем при раскраске по Фонгу.
Анизотропная раскраска (Anisotropic shader). Тип раскраски с несимметричными бликами на поверхности материалов.
Просвечивание (Translucency). Параметр, позволяющий имитировать свет, просвечивающий сквозь материал.
Прозрачность (Transparency). Параметр, определяющий способность видеть сквозь материалы. Используется, к примеру, для имитации стекла.
Зеркальные блики (Specular highlights). Группа параметров, отвечающих за характеристики бликов на поверхности материала.
Самосвечение (Self-Illumination). Чувствительность материала к свету. Если значение данного параметра равно 100, цвет диффузного рассеяния полностью заменяет собой цвет подсветки. Такой материал применяется, например, для моделирования огней неоновой рекламы.
Карты рельефа показанные снизу
Рисунок 8.25. Карты рельефа, показанные снизу, были получены преобразованием исходных текстур в изображения в оттенках серого
Выберите в меню оперативного доступа команду Panels > Saved Layouts > Hypershade/Render/Persp (Панели >Варианты компоновки > Редактор узлов/Визуализатор/Перспектива). Оставьте видимым только слой Doorl. Дело в том, что материалу двери будет проще всего назначить карту рельефа. Так как объект представляет собой плоскости, существует возможность использовать карту рельефа практически любого типа. Измените положение двери в окне проекции Perspective (Перспектива) таким образом,чтобы она располагалась под небольшим углом. В противном случае будет затруднительно наблюдать полученный эффект. Проведите интерактивную фотореалистичную визуализацию.
Откройте окно диалога Attribute Editor (Ректор атрибутов) для материала и щелкните на кнопке с рисунком шахматной доски, расположенной справа от имени параметра Bump Mapping (Карта рельефа). В окне диалога Create Render Node (Создать узел визуализации) щелкните на кнопке с надписью File (Файл) в разделе 2D Textures (Двумерные текстуры).
Карта рельефа назначена практически идеально. Древесные волокна расположены вертикально. Перейдите на вкладку bamp2d и уменьшите величину параметра Bump Depth (Высота рельефа) до значения 0,6. Щелкните на кнопке с указывающей вправо стрелкой, расположенной справа от имени параметра Bump Value (Уровень рельефа), и перейдите на вкладку placeZdTexture. Введите во второе поле, расположенное справа от имени параметра Repeat UV (Повторение по UV-осям), значение 0,7. В первое поле, расположенное справа от имени параметра Noise UV (Зашумление по UV-осям), введите значение 0,1, чтобы сделать вертикальные линии более волнистыми. Разница между видом двери до и после назначения ее материалу карты рельефа показана на Рисунок 8.26.
Карты рельефа
Карты рельефа
Назначение карты рельефа поверхности объекта создает иллюзию наличия трехмерных неровностей, не меняя при этом его фактической геометрии. Кажущаяся рельефность настраивается при помощи изменения яркости отсчетов текстурной карты. Именно поэтому карты рельефа обычно являются изображениями в оттенках серого. Серый цвет рассматривается, как плоская поверхность, более светлые области выступают над ней, а более темные — формируют впадины. В областях изменения яркости и происходит формирование иллюзии рельефа. Так как отсутствие реального рельефа можно заметить при взгляде на поверхность сбоку, формирование его с помощью карт используется только при работе с небольшими деталями. К примеру, вполне допустимо применить карту рельефа для имитации пор на коже носа, но никто не станет назначать ее для имитации носа. Тем не менее с помощью карт рельефа можно успешно формировать различные поверхности — ткани, волокна древесины, дефекты металла и пр. — при условии, что камера не подносится к ним слишком близко.
Карты текстур
Карты текстур
Следующим шагом в работе над сценой будет замена созданных базовых материалов текстурами. Обычно этот термин относится к двумерным изображениям, воспроизводящим рисунок той или иной поверхности, обернутой вокруг трехмерного объекта. Их проекция на поверхность может осуществляться различными способами.
Керамика
Керамика
Назначим горшку материал, имитирующий керамику, созданный на основе раскраски по Ламберту.
Откройте окно диалога Hypershade (Редактор узлов), нажав комбинацию клавиш Shiftt-t. Имейте в виду, что вам потребуется как рабочая область, так и область создания узлов. Щелкните правой кнопкой мыши на верхней панели области создания узлов и выберите в появившемся меню вариант Create Materials (Создание материалов). Щелкните средней кнопкой мыши на образце раскраски Lambert (По Ламберту) и перетащите указатель в нижнее окно рабочей области. Затем дважды щелкните на этом образце материала для вызова окна диалога Attribute Editor (Редактор атрибутов). Если это окно диалога не появится, щелкните на образце материала правой кнопкой мыши и выберите в появившемся контекстном меню вариант Attribute Editor (Редактор атрибутов).
Присвойте новому материалу имя pottery. Щелкните на поле образца цвета, расположенном справа от названия Color (Цвет). В окне диалога Color Chooser (Выбор цвета) сделайте значения параметров Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность) равными 33, 0,8 и 0,7 соответственно. Нажмите кнопку Accept (Принять), чтобы закрыть окно диалога Color Chooser (Выбор цвета).
Выделите цветочный горшок и, щелкнув правой кнопкой мыши на образце материала, выберите в появившемся контекстном меню вариант Assign Material to Selection (Назначить материал выделенному объекту). Вы увидите, как в окне проекции Perspective (Перспектива) цветочный горшок станет темно-оранжевым.
Координирование текстуры с картой рельефа
Координирование текстуры с картой рельефа
При искусном сочетании карт текстуры и рельефа можно получить потрясающую детализацию поверхности, даже на примере простой модели. Художники часто создают такие карты в программах для рисования и аккуратно совмещают расположение рельефных областей карты, выполненной в оттенках серого, с соответствующими цветными областями карты текстуры. Как уже говорилось, в Maya рельеф формируется на основе яркости отсчетов текстурной карты. При этом желательно, чтобы изображение было не очень контрастным, но отчетливо наблюдались переходы между белым и черным цветами.
Металл
Металл
Создание металла требует небольшой хитрости. Ползунки окна диалога Attribute Editor (Редактор атрибутов) имеют верхний и нижний пределы, в которые не всегда попадают нужные вам значения. В большинстве случаев такое значение можно ввести в текстовое поле, расположенное рядом с ползунком. Иногда этот способ позволяет получить впечатляющие результаты.
Используя среднюю кнопку мыши, перетащите еще один образец раскраски Blinn (По Блинну) из области создания узлов в нижнее окно рабочей области. Откройте окно диалога Attribute Editor (Редактор атрибутов) для этого материала и присвойте ему имя gold.
В окне диалога Color Chooser (Выбор цвета) введите в поля параметров Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность) значения 40, 0,8 и 0,2 соответственно и нажмите кнопку Accept (Принять).
Чтобы придать материалу сходство с металлом, щелкните на поле образца цвета справа от имени параметра Specular Color (Цвет зеркальных бликов) и введите в поля Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность) окна диалога Color Chooser (Выбор цвета) значения 40, 1 и 2 соответственно, как показано на Рисунок 8.6. Нажмите кнопку Accept (Принять), а затем закройте окно диалога Attribute Editor (Редактор атрибутов).
Выделите продолговатый сферический объект и назначьте ему вновь созданный материал.
Щелкните правой кнопкой мыши на окне проекции Perspective (Перспектива) и выберите в меню оперативного доступа команду Render > Render Current Frame (Визуализация > Визуализировать текущий кадр), чтобы посмотреть на итоговый вид материалов.
Оставьте открытым появившееся окно диалога Render View (Визуализатор).
Настройка источников света
Настройка источников света
Перед тем как приступить к созданию текстур, нужно добавить в сцену некоторое количество источников света, чтобы в процессе тестовой визуализации дом был освещен со всех сторон. Для облегчения процесса создания источников света мы предлагаем вам сценарий на языке MEL, результатом выполнения которого будет появление в сцене трех прожекторов.
Нажмите комбинацию клавиш Shift + S, чтобы открыть окно диалога Script Editor (Редактор сценариев).
В нижней части окна диалога Script Editor (Редактор сценариев) появится набор команд, которые нужно выполнить. Поместите курсор после последней команды из этого набора и нажмите комбинацию клавиш Ctrl+Enter.
Нажмите комбинацию клавиш Shift+0, чтобы открыть окно диалога Outliner (Структура). Вы увидите, что в сцене появились три источника света типа Spot Light (Прожектор). Теперь все готово для начала создания материалов.
Область создания узлов
Область создания узлов
В области создания узлов показаны все типы объектов выбранной категории, которые вы можете создать. Достаточно выделить в списке нужный образец, и он появится в рабочей области. Щелчок на кнопке со стрелкой вниз, расположенной в верхней части области создания узлов, приводит к появлению контекстного меню выбора категории объектов, содержащего пять команд: Create Materials (Создание материалов), Create Textures (Создание текстур), Create Lights (Создание источников света), Create Utilities (Создание служебных элементов) и Create All Nodes (Создание узлов всех типов). Для упражнений данной главы наилучшим образом подходит последний из упомянутых вариантов. Скрыть область создания узлов можно нажатием крайней левой кнопки панели инструментов окна Hypershade (Редакторузлов).
Окно диалога Create Render Node
Рисунок 8.12. Окно диалога Create Render Node содержит все возможные типы карт текстур
Разверните окно проекции Perspective (Перспектива) на полный экран и нажмите клавишу 5, чтобы гарантировать, что вы находитесь в режиме тонированной раскраски. Выберите в меню оперативного доступа команду Shading > Hardware Texturing (Затенение > Аппаратное наложение текстур).
В данном случае для назначения материала объекту следует воспользоваться приемом «перетащить и оставить». Средней кнопкой мыши щелкните на ячейке образца материала checkerfloor, расположенной в верхнем окне рабочей области, перетащите указатель мыши в окно проекции и положите материал на плоскость пола. После этого пол должен приобрести вид шахматной доски.
Выделите ячейку с образцом материала checkerfloor в окне диалога Hypershade (Редактор узлов), чтобы сделать его активным в редакторе атрибутов. В раскрывающемся списке Texture Quality (Качество текстуры) раздела Hardware Texturing (Аппаратное наложение текстур) выберите вариант High (Высокое). В результате рисунок шахматной доски станет более четким.
В окне диалога Attribute Editor (Редактор атрибутов) поле образца цвета для материала checkerfloor имеет светло-серый цвет. Обратите внимание, что рисунок в виде шахматной доски на расположенной справа кнопке сменился указывающей вправо стрелкой. Это значит, что цвет материала был заменен картой текстуры. Нажмите эту кнопку, чтобы посмотреть на параметры карты текстуры Checker (Шахматное поле).
Появится раздел Checker Attributes (Параметры шахматного поля), показанный на Рисунок 8.13. Здесь можно, к примеру, изменить цвет клеток. Нажмите кнопку с рисунком шахматной доски, расположенную справа от имени параметра Colorl (Первый цвет), и выберите в появившемся окне диалога Create Render Node (Создать узел визуализации) текстуру Marble (Мрамор). Это приведет к замене белых клеток трехмерной текстурой, имитирующей мрамор.
Окно диалога Hypershade
Окно диалога Hypershade
Как и в большинстве программ для создания трехмерной анимации, в Maya имеется редактор материалов, называемый Hypershade (Редактор узлов), который позволяет просматривать образцы материалов в процессе их редактирования. После того как вы оцените вид материала в ячейке образца, имеет смысл воспользоваться интерактивной фотореалистичной визуализацией для более точной настройки. В окне Hypershade (Редактор узлов) используется свободный подход к разработке материалов. Создание определенных эффектов происходит за счет соединения ячеек образцов друг с другом. Например, изображение кирпичной стены получается путем связывания атрибута Bump (Рельеф) с рисунком кирпичей. Редактор узлов также используется в качестве окна просмотра, в котором можно выделять имеющиеся в сцене источники света, камеры, материалы и другие элементы. Для открытия этого окна диалога используйте команду Window > Rendering Editors > Hypershade (Окно > Редакторы визуализации > Редактор узлов) или комбинацию клавиш Shift+t. Появляющееся в результате окно диалога разделено на три части, как показано на Рисунок 8.1. Вертикальная полоса слева носит название области создания узлов, а два окна, расположенные в рабочей области справа, называются просто верхней и нижней вкладками.
Основные типы раскрасок
Основные типы раскрасок
Основные типы раскрасок показаны на Рисунок 8.2 и описаны ниже.
Отражающий материал полученный методом трассирования
Отражающий материал, полученный методом трассирования
Полученный материал gold достаточно убедительно имитирует вид золота, но что нужно сделать, чтобы поверхность материала отражала окружающие предметы? Для этого используется ползунок Reflectivity (Отражательная способность) в окне диалога Attribute Editor (Редактор атрибутов), но вы не увидите никаких результатов, пока не включите механизм трассировки лучей или не назначите карту текстуры атрибуту Reflected Color (Цвет отраженного света).
В окне диалога Render View (Визуализатор) щелкните на кнопке Render Globals (Общие параметры визуализации), как показано на Рисунок 8.7. В разделе Raytracing
Quality (Качество трассирования) установите флажок Raytracing (Трассирование) и закройте окно диалога. Снова визуализируйте сцену, нажав крайнюю левую кнопку на панели инструментов окна диалога Render View (Визуализатор), и вы должны заметить, что поверхность продолговатого сферического объекта начала отражать окружающую обстановку.
Параметры материалов
Параметры материалов
После обзора основных типов раскраски пришла пора поговорить об их параметрах. В большинстве своем они однотипны для различных раскрасок, поэтому имеет смысл подробно рассмотреть только параметры раскраски по Блинну. Для получения доступа к редактированию параметров материала дважды щелкните на любом из образцов материала в окне диалога Hypershade (Редактор узлов). Обычно сначала создается базовый вариант раскраски по Блинну, а затем двойным щелчком открывается окно диалога Attribute Editor (Редактор атрибутов), показанное на Рисунок 8.3. Обратите внимание на системное имя материала в верхней части окна диалога Attribute Editor (Редактор атрибутов). При создании еще одного материала с использованием этого же типа раскраски программа присвоит ему такое же имя, увеличив цифру на конце на единицу. Имеет смысл менять системные имена на более значимые.
Пластмасса
Пластмасса
Для имитации пластмассы используется материал на основе раскраски по Блинну, с яркими бликами.
Средней кнопкой мыши перетащите образец раскраски Blinn (По Блинну) из области создания узлов в нижнее окно рабочей области. Откройте окно диалога Attribute Editor (Редактор атрибутов) и присвойте новому материалу имя red_plastic.
Сделайте цвет материала ярко-красным. В окне диалога Color Chooser (Выбор цвета) можно щелкнуть на одном из подходящих цветов предлагаемой сверху палитры или же выбрать нужный оттенок с помощью ползунков Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность).
В разделе Specular Shading (Параметры-зеркальных бликов) введите в поля Eccentricity (Эксцентриситет) и Specular Roll Off (Сила блеска) значения 0,1 и 1 соответственно, чтобы сделать цвет блика чисто-белым. Теперь образец материата, показанный в верхней части окна диалога Attribute Editor (Редактор атрибутов), должен выглядеть как блестящая красная пластмасса.
Выделите цилиндр в окне проекции Perspective (Перспектива) и, щелкнув правой кнопкой мыши на образце материала в окне диалога Hypershade (Редактор узлов), выберите в появившемся контекстном меню вариант Assign Material to Selection (Назначить материал выделенному объекту). Цилиндр должен стать ярко-красным.
Подведем итоги
Подведем итоги
В процессе выполнения упражнений данной главы вы смогли открыть для себя мир материалов. Он может показаться неохватным, но не стоит впадать в уныние! Полное понимание взаимодействия отдельных узлов друг с другом и того, как редактирование определенных параметров изменяет вид материала, приходит со временем и опытом. Мы предоставили вам основные сведения о материалах и текстурах, которые можно использовать в качестве отправной точки для самостоятельного исследования. В этой главе вы познакомились со следующими темами и понятиями:
Раскраска по Блинну, Фонгу, Ламберту и анизотропная. Концепция основных типов раскраски может на первый взгляд показаться сложной, но теперь вы имеете представление о том, чем они отличаются друг от друга.
Редактирование различных характеристик материалов. Понимание назначения основных характеристик материала является ключом к успешной имитации вида реальных поверхностей.
Работа с окном Hypershade. Вы приобрели навыки использования основного инструмента для создания и редактирования материалов в Maya.
Назначение материалов элементам дома. С помощью материалов вы сделали модель, созданную в предыдущих главах, действительно достойной визуализации.
Изучение процесса назначения материалов. Не существует устоявшегося набора методов создания и назначения материалов объектам сцены, но мы дали вам представление о том, как в общем случае происходит этот процесс.
Добавление карт текстуры. Простой одноцветный материал может выглядеть неплохо сам по себе, но, назначив какой-нибудь из его характеристик карту текстуры, можно сделать его вид по-настоящему реалистичным.
Карты рельефа. Вы узнали, как можно создать иллюзию рельефа на поверхности, не меняя ее фактической геометрии.
Преломляющий материал полученный методом трассирования
Преломляющий материал, полученный методом трассирования
Также имеется возможность создания прозрачных материалов, преломляющих свет. При прохождении сквозь такой материал лучи света будут отклоняться.
Используя среднюю кнопку мыши, перетащите еще один образец раскраски Btinn (По Блинну) из области создания узлов в нижнее окно рабочей области. Откройте окно диалога Attribute Editor (Редактор атрибутов) для этого материала и присвойте ему имя glass.
Сделайте цвет материала черным, переместив ползунок, расположенный справа от имени параметра Color (Цвет), до отказа влево. Ползунок, расположенный справа от имени параметра Transparency (Прозрачность), наоборот, переместите до отказа вправо. Как только вы начнете увеличивать значение прозрачности, черный фон в ячейке образца материала сменится рисунком шахматной доски. Сделайте параметр Eccentricity (Эксцентриситет) равным ОД, параметр Specular RollQff (Сила блеска) — равным 1, а ползунок параметра Specular Color (Цвет зеркальных бликов) сдвиньте до отказа вправо.
Откройте раздел Raytrace Options (Параметры трассирования) и установите флажок Refractions (Преломления). В поле параметра Refractive Index (Коэффициент преломления) введите значение 1,5, что соответствует коэффициенту преломления стекла. Выделите кольцо, расположенное слева от горшка для цветов и, щелкнув правой кнопкой мыши на образце материала glass, выберите в появившемся контекстном меню команду Assign Material to Selection (Назначить материал выделенному объекту).
Процедурные карты текстур
Процедурные карты текстур
Кроме текстур, полученных путем сканирования фотографий реальных объектов, существуют процедурные карты текстур (procedural textures), генерируемые математически. Многие материалы, например кирпич, черепица или градиентная заливка, имеют повторяющуюся структуру, которая легко может быть представлена уравнением. Также математически можно имитировать мрамор, кожу, воду, гранит и многие другие сложные материалы с непериодической структурой. Процедурные текстуры в Maya представлены в двух вариациях — двумерные и трехмерные. Двумерные карты текстур можно представить как созданные на основе математических формул растровые изображения. Однако сформированное двумерное изображение обычно проецируется на поверхность трехмерного объекта. Соответственно, в этом случае приходится иметь дело со всеми проблемами, возникающими при использовании обычных текстур. Рисунок трехмерных карт текстур меняется в пространстве, и вы видите изображение, образующееся при пересечении текстуры с поверхностью объекта. Это похоже на вырезание фигуры из блока мрамора. Поэтому при работе с процедурными картами не требуются проекционные координаты. Но если к объекту применены деформации, создается впечатление, что карта текстуры соскальзывает с поверхности объекта. Для исправления ситуации в этом случае в Maya используется дополнительная функция Texture Reference Object (Ссылочный объект для текстуры). Она позволяет деформировать текстуры вместе с поверхностью.
Процедурные карты текстур имеют ряд преимуществ. Так как они создаются на основе математических формул, редактированием их параметров можно создавать различные эффекты. Благодаря возможности генерации случайного шумового процесса создаются материалы с рисунком в виде областей случайной формы и яркости. Кроме того, поскольку текстурные карты существуют во всех точках трехмерного пространства, их можно использовать для формирования материалов сложных объектов, подбор проекционных координат для которых является весьма трудоемкой задачей.
Проекционные координаты
Проекционные координаты
Проекционные координаты, которые иногда также называют UV-координатами, указывают способ размещения двумерного рисунка на поверхности модели, причем способ зависит от того, создана ли модель на основе NURBS-кривых или же на основе полигонов. В первом случае модель снабжена встроенной системой проекционных координат. Так как NURBS-поверхности по определению являются параметрическими, карта текстуры автоматически следует всем изгибам этой поверхности. Впрочем, даже в этом случае существует возможность редактирования проекционных координат, что позволяет изменить положение и ориентацию текстуры на поверхности объекта.
Для полигональных поверхностей обычно используются проекционные координаты нескольких типов: Planar (Плоские), Cylindrical (Цилиндрические), Spherical (Сферические). Кроме того, используется особый метод, называемый автоматическим проецированием. Как можно ожидать, применение проекционных координат типа Planar (Плоские) приводит к размыванию рисунка в областях, перпендикулярных направлению проецирования. Создается впечатление, что решить проблему можно с помощью цилиндрических и сферических проекционных координат. Но они имеют точки сингулярности, расположенные на полюсах сферы и цилиндра, в которых карта текстуры сходится в одну точку.
В общем случае желательно выбирать проекционные координаты, максимально совпадающие с формой поверхности. Кроме того, в процессе анимации можно скрыть область сингулярности. В самых сложных случаях проблема решается путем использования различных наборов проекционных координат и тщательного редактирования положения текстуры на поверхности.
Раскраска по Блинну
Раскраска по Блинну
В случае выбора данного типа раскраски блики на поверхности материала выглядят более округлыми и не столь неестественно большими и яркими, как при раскраске по Фонгу. Этот тип раскраски используется для имитации металлических поверхностей с мягкими бликами, таких как медь или алюминий. Так как материалы, получаемые на основе этой раскраски, универсальны и не приводят к появлению мерцания при работе с картами рельефа, именно они будут использоваться в упражнениях этой главы.
Раскраска по Фонгу
Раскраска по Фонгу
При раскраске по Фонгу принимаются в расчет кривизна поверхности, количество падающего на поверхность света и ориентация камеры. В результате получаются резкие блики, характерные для полированных поверхностей, таких как пластмасса, фарфор и покрытая глазурью керамика.
Примечание
ПРИМЕЧАНИЕ
Если в процессе анимации окажется, что блики мерцают, поменяйте раскраску по Фонгу на раскраску по Блинну, придав бликам более мягкую форму. Эта проблема обостряется при использовании карт рельефа.
Раскраска по Ламберту
Раскраска по Ламберту
Раскраска по Ламберту является основой плоского гладкого материала без зеркальных бликов. При ее вычислении в расчет не принимаются отражающие свойства, благодаря которым поверхность принимает матовый вид. Раскраска по Ламберту используется для имитации таких материалов, как керамика, мел, матовые краски и т. п. По умолчанию любой созданный объект имеет раскраску по Ламберту. Но если материал объекта предполагает наличие зеркальных бликов, то имеет смысл выбрать другую раскраску. Обычно желательно наблюдать блики даже в процессе моделирования объекта, так как это помогает обнаружить разрывы на поверхности модели.
Расширенная раскраска по Фонгу
Расширенная раскраска по Фонгу
Существует еще одна версия раскраски по Фонгу с более мягкими бликами. При этом визуализация объекта, которому назначен материал с этим типом раскраски, происходит быстрее, чем обычно. Большинство аниматоров используют обычную раскраску по Фонгу для получения интенсивных бликов и раскраску по Блинну в остальных случаях.
Раздел Checker Attribute в окне диалога Attribute Editor
Рисунок 8.13. Раздел Checker Attribute в окне диалога Attribute Editor

Примечание
Примечание
Чтобы после назначения текстуры вернуться к исходному узлу, нажмите кнопку с указывающей вправо стрелкой, расположенную справа от названия материала в верхней части окна диалога Attribute Editor (Редактор атрибутов). Для отмены назначения текстуры характеристике материала щелкните на имени этой характеристики правой кнопкой мыши и выберите в появившемся контекстном меню команду Break Connection (Разорвать связь).
В окне диалога Attribute Editor (Редактор атрибутов) в данный момент показаны параметры текстуры мрамора. Увеличим прожилки на этой текстуре. Перейдите на вкладку placeSdTexture и введите в текстовые поля, расположенные справа от имени параметра Scale (Масштаб), значение 10. Визуализируйте окно проекции Perspective (Перспектива), чтобы посмотреть на полученный результат. Как легко заметить, пол отражает некоторые предметы. Это связано с тем, что значение параметра Reflectivity (Отражательная способность) материала, назначенное полу, равно 0,5.
Теперь назначим материал с текстом «Maya 4 Fundamentals» объекту в форме щита, полученному на основе сетки полигонов. Создайте новый материал, используя раскраску Blinn (По Блинну), и откройте для него окно диалога Attribute Editor (Редактор атрибутов). Присвойте материалу имя m4fshUd. Нажмите кнопку с рисунком шахматной доски, расположенную справа от имени параметра Color (Цвет), и в окне диалога Create Render Node (Создать узел визуализации) щелкните на кнопке с надписью File (Файл) в разделе 2D Textures (Двумерные текстуры). Справа от текстового поля Image Name (Имя изображения) находится кнопка со значком папки, щелчок на которой приводит к появлению окна диалога, предназначенного для выбора файла с рисунком. Перетащите средней кнопкой мыши материал m4fshild из верхнего окна рабочей области на объект, имеющий форму щита. В результате на его поверхности появится искаженная текстура. Объект Shield получен из сетки полигонов методом вращения. Проекционные координаты расположены по кругу в направлении вращения сплайна. Но нам нужно, чтобы надпись располагалась поперек щита, поэтому потребуется создать для него новые проекционные координаты.
Выделите объект Shield и выберите в меню оперативного доступа команду Edit Polygons > Texture > Planar Mapping (Редактирование полигонов > Текстура > Плоские проекционные координаты). На поверхности объекта появятся управляющие векторы проекционных координат.
Теперь можно изменить размер и положение манипулятора карты. В одном из его углов находится красная буква L. Если ее выделить, она приобретет желтый цвет, а в центре появятся три набора управляющих векторов — одно кольцо (для активизации преобразования Rotate (Повернуть)), а также значки преобразований Scale (Масштабировать) и Move (Переместить), как показано на Рисунок 8.14. С помощью этих управляющих векторов можно расположить текстуру на поверхности объекта требуемым образом. Имейте в виду, что повторный щелчок на букве L приведет к исчезновению управляющих векторов и возвращению в исходный режим, в котором можно менять размер карты текстуры.
Результат визуализации сцены после
Рисунок 8.15. Результат визуализации сцены после редактирования положения карты текстуры на поверхности объекта Shield. Обратите внимание, что в режиме тонированной раскраски стеклянное кольцо стало невидимым

Совет
Совет
Если нужно вернуть управляющие векторы, отвечающие за положение текстуры, выделите объект, откройте окно каналов, нажав комбинацию клавиш Shift+C, и щелкните на строчке polyPlanarProj. Если в результате управляющие векторы не появились, выберите в меню оперативного доступа команду Display > UI Elements > Tool Box (Отображение > Элементы интерфейса > Панель инструментов), нажмите шестую сверху кнопку Show Manipulator (Отображение манипулятора) и повторите щелчок на названии polyPlanarProj.
Окно диалога Hypershade
Рисунок 8.1. Окно диалога Hypershade
Набор материалов
h2>
Рисунок 8.10. Набор материалов, созданных для объектов сцены в рабочей области окна Hypershade
Для дальнейших действий потребуется окно проекции Perspective (Перспектива), окно Outliner (Структура) и окно Hypershade (Редактор узлов). Выберите в меню оперативного доступа команду Panels > Saved Layouts > Hypershade/Outliner/ Persp (Панели > Варианты компоновки > Редактор узлов/Схема сцены/Перспектива). Наличие окна Outliner (Структура) позволяет быстро выделить нужный объект сцены, избежав при этом путаницы. В окне Hypershade (Редактор узлов) нажмите кнопку Show Top Tabs Only (Показывать только верхнее окно). Это первая слева кнопка из группы, расположенной в верхнем правом углу окна Hypershade (Редактор узлов). Ее точное местонахождение показано на Рисунок 8.1. Чтобы расширить рабочее пространство, щелкните на кнопке Toggle the Create Bar On/Off (Вкл./выкл. область создания узлов). Затем выберите в меню оперативного доступа команду Display > UI Elements > Hide UI Elements (Отображение > Элементы интерфейса > Скрыть элементы интерфейса), а затем, нажав комбинацию клавиш Shift+C, сделайте видимым окно каналов. Это даст вам возможность работать с отдельными слоями. Вид окна программы после всех вышеописанных манипуляций показан на Рисунок 8.11.

Рисунок 8.11. Используя окна проекции Perspective, Outliner и Hypershade, можно легко назначить созданные материалы объектам сцены
В окне Outliner (Структура) все элементы находятся в группе Old_House. Сделайте видимыми все слои. Для начала выделите в окне Outliner (Структура) объект OuterWall. В окне проекции Perspective (Перспектива) вокруг этого объекта должен появиться зеленый каркас. Щелкните правой кнопкой мыши на образце материала Walls_Blinn в окне Hypershade (Редактор узлов) и выберите в появившемся контекстном меню команду Assign Material to Selection (Назначить материал выделенному объекту). Сделайте активным окно проекции Perspective (Перспектива) и нажмите клавишу 7, чтобы гарантировать, что сцена освещается всеми имеющимися источниками света.
Выделите в окне Outliner (Структура) объект Foundation и назначьте ему материал Foundation_PhongE. Теперь внешние стены дома имеют цвет назначенных им материалов.
Выделите трубу и назначьте ей материал ChimneyBase_Lambert. Затем, раскрыв группу Chimney, выделите объект Chimney_Top и назначьте ему материал
ChimneyPipe_Lambert. Несмотря на то что изначально материал, предназначенный для основания трубы, был назначен дымоходу, это не оказало никакого эффекта на вид материала ChimneyPipe_Lambert, который был назначен поверх него.
Раскройте группу Roof и, выделив объект Roof_Slab, назначьте ему материал Trim_Blinn. Затем выделите объект Shingles и назначьте ему материал Roof_ Phong. Проделайте то же самое для подгруппы RoofSidel.
Сверните группу Roof в окне Outliner (Структура) и сделайте слой RoofL невидимым. Сохраните сцену.
Теперь осталось назначить материал частям крыльца. Выделите объект PorchTrim и назначьте ему материал Trim_Blinn. Затем выделите объекты Porch_RailBars, Porch_Legs и Porch_Poles, которым следует назначить материал VertPorchRail_ Blinn. Напоследок назначьте материал HorizPorchRail_Blinn объектам PorchFloor, Porch_Stairs и Porch_HandRails.
Назначение базовых материалов объектам сцены закончено. В следующем разделе мы поговорим о том, как увеличить детализацию объектов с помощью текстур. Скройте слой PorchL и сохраните сцену.
Окно каналов является
Рисунок 8.12. Окно каналов является альтернативным инструментом для редактирования параметров материала
В общем случае раскраска
Рисунок 8.2. В общем случае раскраска PhongE имеет более мягкие блики, чем раскраска Phong. То же самое можно сказать о раскрасках BlinnE и Blinn
Настройка параметров карты текстуры Ramp
Рисунок 8.24. Настройка параметров карты текстуры Ramp
Теперь вы можете продолжить работу над сценой самостоятельно, назначив по своему усмотрению текстуры остальным материалам. В следующем разделе мы поговорим о другом важном атрибуте материалов — карте рельефа.
С помощью карты рельефа
Рисунок 8.27. С помощью карты рельефа изображение фундамента удалось сделать на редкость детализированным
Результат импорта объектов
h2>
Рисунок 8.28. Результат импорта объектов

Для просмотра и визуализации законченной версии дома загрузите файл ch0SHouseComplete.mb.
Сравнение материалов
Рисунок 8.4. Сравнение материалов с повышенным значением параметров Transparency и Translucency

Материалы, назначенные объектам, имеют значение параметра Reflectivity (Отражательная способность), равное 1 (то есть отражательная способность равна 100 %), но затем с помощью различных методов были получены дополнительные эффекты. Атрибут Reflected Color (Цвет отраженного света) материала крайней слева сферы не имеет назначенной карты текстуры, в то время как у материала сферы, расположенной чуть правее, этому атрибуту назначена карта Env Chrome (Хромовое зеркало), благодаря чему создается впечатление наличия рисунка на поверхности объекта. Материал третьей слева сферы получен включением эффекта трассирования, поэтому на ее поверхности отражаются предметы окружающей обстановки. Разумеется, при этом атрибут Reflected Color (Цвет отраженного света) не вносит никакого вклада в вид материала. Материал крайней правой сферы получен сочетанием эффекта трассирования и назначения карты текстуры атрибуту Reflected Color (Цвет отраженного света). В результате получается практически зеркальная поверхность, в которой отражаются предметы, расположенные рядом со сферой.
Окно диалога Color Chooser
Окно диалога Color Chooser (Выбор цвета) появляется всякий раз при щелчке на поле образца цвета. В верхней части этого окна расположена панель с 14 кнопками. Нажатие кнопки приводит к выделению соответствующего цвета. Если щелкнуть на ней правой кнопкой мыши, кнопка приобретет цвет, выбранный в данный момент. После нажатия кнопки со значком пипетки указатель мыши меняет свою форму. Если теперь щелкнуть на образце цвета в любом из окон программы Maya, окажется выделенным именно этот цвет. Ниже, в разделе Wheel (Палитра) находится цветовой спектр, показанный на Рисунок 8.5. Расположенные снизу ползунки настройки компонентов цветовой модели можно использовать в двух режимах — RGB (Red (Красный), Green (Зеленый) и Blue (Синий)) и HSV (Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность)). Выбор режима осуществляется с помощью раскрывающегося списка, расположенного в нижней части раздела Sliders (Ползунки). Причем второй из них используется чаще. Используйте ползунок Hue (Цветовой тон) для выбора цвета, затем с помощью ползунка Saturation (Насыщенность) выберите насыщенность цвета по сравнению с серым. Наконец, настройте яркость цвета ползунком Value (Интенсивность). В самом низу данного раздела находится ползунок, регулирующий прозрачность, но он используется довольно редко.
Выбор цвета при имитации золота
Рисунок 8.6. Выбор цвета при имитации золота
Щелчок на этой кнопке
ПРИМЕЧАНИЕ
Помните, что можно менять масштаб и осуществлять панорамирование визуализированного изображения, а также любого из окон рабочей области в окне
диалога Hypershade (Редактор узлов).
З Окно диалога Attribute
Рисунок 8.З. Окно диалога Attribute Editor с основными параметрами раскраски по Блинну

Изображение рядом с надписью Material Sample (Образец материала) представляет собой сферу, которой присвоен созданный материал. Ее вид меняется в процессе редактирования атрибутов этого материала. Раскрывающийся список Туре (Тип) используется для изменения типа материала. Но имейте в виду, что если набор параметров при этом меняется, они автоматически принимают значения, заданные по умолчанию, а присвоенное имя сменяется системным.
Ниже находятся разделы Common Material Attributes (Общие параметры материала) и Specular Shading (Параметры зеркальных бликов). Так как их параметры чаще всего меняют при редактировании материалов, эти разделы по умолчанию развернуты, в отличие от остальных разделов окна диалога Attribute Editor (Редактор атрибутов).
Обратите внимание, что для изменения значений первых пяти переменных раздела Common Material Attributes (Общие параметры материала) используются поле образца цвета, ползунок и кнопка. Перемещая ползунок, можно сделать материал более светлым или более темным. Для изменения цвета материала следует открыть окно диалога Color Chooser (Выбор цвета), щелкнув на поле образца цвета. Если же требуется заменить цвет текстурой, щелкните на кнопке. Перечислим параметры раскраски по Блинну, содержащиеся в разделах Common Material Attributes (Общие параметры материала) и Specular Shading (Параметры зеркальных бликов).
Color (Цвет). Базовый цвет поверхности.
Transparency (Прозрачность). Регулирует степень прозрачности материала. Как только значение этого параметра начинает отличаться от нуля, используемый по умолчанию черный фон в ячейке образца материала заменяется рисунком шахматной доски, что позволяет более адекватно оценивать образцы стеклянных и других прозрачных материалов.
Ambient Color (Цвет подсветки). Определяет цвет материала в области тени, где он освещается только рассеянным светом. Имеет смысл в общем случае оставлять значение этого параметра равным нулю, что соответствует черному цвету. Отличный от черного цвет подсветки приводит к тому, что после визуализации такой объект становится менее контрастным и более плоским.
Incandescence (Свечение). Имитация свечения диффузного компонента цвета материала. Увеличение этого параметра приводит к постепенной замене теней на поверхности материала цветом диффузного рассеяния. Имейте в виду, что после визуализации материал будет выглядеть так, как будто он испускает свет, но на самом деле изменения освещенности окружающих предметов не происходит.
Diffuse (Цвет диффузного рассеяния). Этот параметр задает цвет световых лучей, рассеиваемых материалом при освещении прямыми лучами света. По умолчанию его значение равно 0,8, благодаря чему цвет поверхности, заданный с помощью параметра Color (Цвет), становится более тусклым. Часто аниматоры назначают этому компоненту особую карту текстуры, которая позволяет имитировать загрязненную поверхность.
Translucence (Просвечивание). Этот параметр, отсутствовавший в предыдущих версиях Maya, позволяет имитировать цвет света, просвечивающего сквозь материал, и используется при создании таких материалов, как, к примеру, матовое стекло. Эффект основан на наличии источников света вокруг и позади объекта, которому назначен просвечивающий материал.
Translucence Focus (Фокусировка просвечивания). Данный параметр, позволяющий настроить способ отражения света от поверхности, также отсутствовал в предыдущих версиях Maya. Его низкие значения приводят к интенсивному рассеиванию света и появлению мягкого, размытого эффекта просвечивания.
Eccentricity (Эксцентриситет). Ширина блика, определяющая, насколько полированной, или наоборот, шероховатой будет выглядеть поверхность.
Specular Roll Off (Сила блеска) Параметр, задающий яркость зеркального блика.
Specular Color (Цвет зеркальных бликов). Обычно для этого параметра, задающего цвет бликов на блестящем материале, выбирают белый или серый цвет.
Reflectivity (Отражательная способность). Задает яркость отражения окружающих объектов поверхностью зеркального материала. Отражения можно имитировать как методом трассировки лучей, так и с помощью карт текстуры. Если атрибуту Reflected Color (Цвет отраженного света) не назначена карта текстуры, то для наблюдения эффекта, вызванного изменением отражательной способности, необходимо включить отслеживание путей прохождения отдельных световых лучей от источника до объектива камеры с учетом их отражения от объектов сцены и преломления в прозрачных средах. Это можно сделать, установив в разделе Raytradng Quality (Качество трассирования) окна диалога Render Globals (Общие параметры визуализации) флажок Raytradng (Трассирование).
Reflected Color (Цвет отраженного света). При работе с материалом, полученным на основе раскраски по Блинну, использование окна диалога Color Chooser (Выбор цвета) и ползунка не оказывает никакого эффекта. Но если назначить цвету отраженного света карту текстуры, материал приобретет способность отражать окружающую среду. При этом способе моделирования отражающей поверхности не происходит замедления процесса визуализации, сопровождающего трассирование лучей. Кроме того, это может быть полезно в ситуациях, когда окружающая среда отсутствует.
Рассмотрим на примерах разницу между некоторыми из перечисленных параметров. На Рисунок 8.4 у материала, назначенного расположенной слева плоскости, увеличен параметр Transparency (Прозрачность), благодаря чему можно видеть расположенный позади этой плоскости предмет. Материал, назначенный плоскости, расположенной слева, имеет повышенное значение параметра Translucence (Просвечивание), что приводит к появлению на ее поверхности тени от расположенного позади объекта.
Создание основных материалов для модели дома
Создание основных материалов для модели дома
В результате выполнения упражнений в главах 5 и 6 был создан дом. Теперь вам предстоит сделать его изображение более реалистичным с помощью материалов.
Свойства материалов
Свойства материалов
Начинающие аниматоры часто не уделяют должного внимания назначению материалов и освещению сцены. «Добавим несколько источников света, сделаем этот объект красным, а этот — синим, и все готово». В результате обычно получается высветленная, плоская сцена. Большинство предубеждений, связанных с компьютерной анимацией, высказываемых представителями традиционных видов искусства, связано именно с демонстрацией простейших визуализаций, подчеркивающих ограничения данного метода. Однако с помощью Maya можно создавать и настоящие произведения искусства. Правда создание сложной раскраски требует больших временных затрат. Художники, занимающиеся компьютерной графикой, тратят на освещение и создание материалов столько же времени, сколько на моделирование объектов сцены.
Без материалов невозможно создать реалистичное изображение. Имейте в виду, что их внешний вид зависит от освещения, поэтому, если, к примеру, сцена осве-щена очень ярко, имеет смысл сделать материалы более темными. Обычно работа над материалами и освещением происходит одновременно, а результаты редакти-рования проверяются многочисленными визуализациями. Умение компенсировать ограничения виртуальных источников света и создать хорошо освещенную сцену является искусством, детали которого мы будет обсуждать в следующей главе. А здесь мы сосредоточимся на обсуждении свойств материалов.
Что мы подразумеваем под этим термином? Это универсальное понятие, описывающее все характеристики вида поверхности. Начинающие пользователи обычно сначала замечают только цвет поверхности — красный или цвета древесины или металлический серебряный. Опытный аниматор замечает, однако, и другие (рак-торы. Для него существует не просто металлический серебряный цвет, а гладкая полированная поверхность, отражающая окружающие объекты. Кроме таких факторов, как цвет, блеск и отражающая способность, в Maya рассматриваются также прозрачность, просвечивание, преломляющая способность, рельефность и множество других параметров, настраиваемых пользователями. Внимание ко всем этим деталям позволяет создать действительно впечатляющую анимацию.
Трехмерные карты текстур
Трехмерные карты текстур
Все трехмерные процедурные карты текстур, кроме карты Snow (Снег), относятся к картам со случайным рисунком. Некоторые из них, например Wood (Дерево) или Marble (Мрамор), идеально имитируют природные материалы. Даже при моделировании объектов, созданных руками человека, не обойтись без этих карт. Имитация мозаики, ковровых покрытий или картины, нарисованной кистью на стене, происходит на основе именно трехмерных карт текстур.
Управляющие векторы плоских проекционных
Рисунок 8.14. Управляющие векторы плоских проекционных координат были слегка отодвинуты от объекта для большей наглядности. Чтобы сделать их видимыми, нужно щелкнуть на красной букве L, расположенной в углу манипулятора
Визуализируйте сцену, чтобы посмотреть на полученный результат. Он показан на Рисунок 8.15.
Использование карт
Упражнение. Использование карт рельефа для материалов, назначенных частям дома
Применение карт рельефа в материалах, назначенных различным элементам дома, требует намного больших усилий. В этом упражнении мы на примере трех материалов дадим вам представление о том, как это можно сделать Итак вам предстоит изменить вид трубы, фундамента и внешних стен. 1. Продолжите редактирование созданной вами сцены с домом или загрузите файл ch08tutOSend.mb. Так как карты рельефа определяются яркостью изображения в оттенках серого, иногда имеет смысл взять рисунок текстуры и преобразовать его, как показано на Рисунок 8.25. После того как вы получили карту рельефа, остается только совместить ее с изображением текстуры, назначенной объекту.
Материалы для дома
Упражнение. Материалы для дома
Для более эффективной работы в данном случае необходимо видеть окна Hypershade (Редактор узлов) и Render View (Визуализатор). Выберите в меню оперативного доступа команду Panels > Saved Layouts > Hypershade/Render/Persp (Панели > Варианты компоновки > Редактор узлов/Визуализатор/Перспектива). Помните, что если перед выбором этой команды одно из упомянутых окон было плавающим, оно не может быть использовано в качестве окна проекции.
Для дверной ручки лучше всего подойдет потертый полированный металл. Для начала оставьте видимым только слой DoorL. Если в сцене останутся видимыми такие объекты, как камеры или деформаторы, скройте их, выбрав в меню оперативного доступа команды Show > Cameras (Показать > Камеры) и Show > Deformers (Показать > Деформаторы). Измените масштаб изображения таким образом, чтобы дверная ручка оказалась ясно видимой.
В своей основе материал, который нужно назначить дверной ручке, похож на металл, созданный в предыдущем упражнении. Поэтому просто повторите шаги с восьмого по десятый и присвойте материалу имя DoorKnob-Blinn.
Примечание
При использовании дефиса в именах объектов программа автоматически преобразует его в знак подчеркивания.
Убедитесь, что дверная ручка выделена, и назначьте ей материал DoorKnob_ Blinn. Щелкните на третьей слева кнопке панели инструментов окна проекции Render View (Визуализатор), чтобы начать интерактивную фотореалистичную визуализацию. Когда процесс будет закончен, нарисуйте вокруг дверной ручки выделяющую рамку, начав движение указателя мыши с верхнего правого угла и закончив нижним левым. После завершения ее создания рамка станет зеленой. Теперь после каждого внесения изменений в структуру материала будет происходить автоматическая визуализация области внутри рамки.
На данный момент дверная ручка имеет безобразное ярко-желтое пятно, придающее ей нереальный вид. Выделите материал DoorKnob_Blinn в окне Hypershade (Редактор узлов) и откройте для него окно диалога Attr ibute Editor (Редактор атрибутов). Щелкните на поле образца цвета, расположенном справа от имени параметра Specular Color (Цвет зеркальных бликов), и в окне диалога Color Chooser (Выбор цвета) введите в поле Value (Интенсивность) значение 0,45. В результате зеркальный блик станет более тусклым.
Сохраните сцену под именем chOSTexturedHouse. На данный момент в окне проекции Perspective (Перспектива) видна не только дверная ручка, но и сама дверь, так что можно назначить материал и ей.
Используя среднюю кнопку мыши, перетащите еще один образец раскраски Blinn (По Блинну) из области создания узлов в нижнее окно рабочей области. Откройте окно диалога Attribute Editor (Редактор атрибутов) для этого материала и присвойте ему имя Door-Blinn.
Выделите объект Door в окне проекции Perspective (Перспектива). Помните, что в его основе лежит NURBS-примитив Cube (Куб), так что после щелчка на любой из сторон не забудьте нажать клавишу t, чтобы выделить объект целиком.
Щелкните правой кнопкой мыши на новом образце материала в окне диалога Hypershade (Редактор узлов) и выберите в появившемся контекстном меню команду Assign Material to Selection (Назначить материал выделенному объекту). В окне проекции Render View (Визуализатор) произойдет автоматическое обновление изображения.
Теперь пришло время настроить параметры материала в окне диалога Attribute Editor (Редактор атрибутов). Для двери нам нужен материал, имитирующий дерево, поэтому щелкните на поле образца цвета, расположенном справа от имени параметра Color (Цвет), и присвойте параметрам Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность) значения 40, 0,8 и 0,3 соответственно. Сделайте параметр Eccentricity (Эксцентриситет) равным 0,5, чтобы увеличить размер зеркальных бликов, и сделайте цвет этих бликов немного светлее основного цвета двери. Для этого щелкните на поле образца цвета, расположенном справа от имени параметра Specular Color (Цвет зеркальных бликов), и присвойте параметрам Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность) значения 40,- 0,4 и 0,5 соответственно. Напоследок введите в поле параметра Reflectivity (Отражательная способность) значение 0 и сохраните сцену.
Теперь займемся созданием материала для окон. Скройте слой DoorL и сделайте видимым слой Windows!..
Создайте анизотропный материал, присвоив ему имя Window_Anisotropic. Введите в поле параметра Diffuse (Цвет диффузного рассеяния) значение 1, цвет материала сделайте черным, ползунок параметра Transparency (Прозрачность) переместите до отказа вправо, а коэффициент преломления (напоминаем, что поле данного параметра находится в разделе Raytrace Options (Параметры трассирования)) сделайте равным 1,5.
Щелкните на поверхности оконного стекла и убедитесь, что в верхней части окна каналов появилось имя объекта Window_Glass. Назначьте объекту материал Window_Anisotropic. Повторите эту операцию для второго оконного стекла и сохраните сцену. Обратите внимание, что благодаря прозрачности материала теперь невозможно увидеть плоскость, которая служит основой стекла. Но ее по-прежнему можно выделить, щелкнув в том месте, где она должна располагаться.
Для оконного переплета нужен материал, имитирующий дерево, примерно такой же, как и для двери. Впоследствии материал можно будет использовать для остальных деревянных поверхностей модели. В этом случае она будет выглядеть более реалистично. В конце концов, при создании дома применяется одно и то же дерево. Кроме того, это проще, чем создать новый материал для каждого элемента сцены. На вкладке Materials (Материалы) окна проекции Hypershade (Редактор узлов) выделите материал DoorKnob_BHnn и нажмите комбинацию клавиш Ctrl+d, чтобы продублировать его. Присвойте копии имя Trim_Blinn.
В большинстве случаев для редактирования параметров материала используется окно диалога Attribute Editor (Редактор атрибутов). Но сейчас попробуем сделать это с помощью окна каналов. Введите в поля Color R (Красный), Color G (Зеленый) и Color В (Синий) раздела Trim_Blinn значения 0,4, 0,35 и 0,25 соответственно, как показано на Рисунок 8.9. Цвет копии станет темнее цвета исходного материала.
Выделите один из объектов Window_Frame и назначьте ему материал Trim_ Blinn. Теперь нужно назначить этот же материал горизонтальной и вертикальной перегородкам окна. В окне диалога Outliner (Структура) щелкните на квадратике со знаком «плюс», расположенном справа от имени объекта Old_House, затем тем же способом раскройте группы Windows и Window и выделите названия объектов Window_CrossH и Window_CrossV. Щелкните правой кнопкой мыши на материале Trim_Blinn и выберите в появившемся контекстном меню команду Assign Material to Selection (Назначить материал выделенному объекту). Проделайте вышеописанные операции со вторым окном.
Итак, создание основных материалов для окон закончено. Скройте слой WindowsL и сохраните сцену.
Назначение карты рельефа
Упражнение. Назначение карты рельефа
В этом упражнении вам предстоит назначить эффект случайных пятен характеристике Bump Mapping (Карта рельефа) материала, используемого для имитации глины. Это придаст цветочному горшку более естественный вид.
Загрузите файл ch08tut04end.mb.В рабочей области окна Hypershade (Редактор узлов) перетащите средней кнопкой мыши образец материала pottery из верхнего окна в нижнее.
Дважды щелкните на этом образце материала, чтобы открыть для него окно диалога Attribute Editor (Редактор атрибутов). Щелкните на кнопке с рисунком шахматной доски, расположенной справа от имени параметра Bump Mapping (Карта рельефа), чтобы открыть окно диалога Create Render Node (Создать узел визуализации).
Нажмите кнопку Solid Fractal (Пространственный фрактал) в разделе 3D Textures (Трехмерные текстуры). В разделе 3d Bump Attributes (Параметры трехмерного рельефа) расположены два параметра: Bump Value (Уровень рельефа) и Bump Depth (Высота рельефа). Обратите внимание, что последний параметр по умолчанию имеет значение 1. Его можно увеличить или уменьшить с помощью ползунка, расположенного справа от имени параметра. Щелкните на кнопке с указывающей вправо стрелкой, расположенной справа от имени параметра Bump Value (Уровень рельефа), чтобы получить возможность редактирования параметров фрактала, на основе которого формируется рельеф.
Сделайте величину параметра Ratio (Пропорциональность) равной единице.
Перейдите на вкладку place3dTexture. В принципе работать с этим узлом можно и на вкладке Work Area (Рабочая область) окна Hypershade (Редактор узлов). Введите в поля, расположенные справа от имени параметра Scale (Масштаб), значение 50.
Визуализируйте сцену, чтобы посмотреть, как изменился вид цветочного горшка.
Назначение текстур дверной ручке стенам и окнам
Упражнение. Назначение текстур дверной ручке, стенам и окнам
Использование одноцветного материала для дверных ручек, к сожалению, не дает нужного эффекта. Ранее мы уже упоминали, что, назначив карту текстуры характеристике материала Diffuse (Цвет диффузного рассеяния), можно придать объекту изношенный вид. Именно это нужно проделать с материалом дверной ручки.
Прежде всего загрузите нужную сцену. Вы можете продолжить редактирование сцены с домом.
Для начала скройте элементы интерфейса, а затем выберите в меню оперативного доступа команду Panels > Saved Layouts > Hypershade/Render/Persp (Панели > Варианты компоновки > Редактор узлов/Визуализатор/Перспектива).
Оставьте видимым только слой DoorL. Выделите дверную ручку и нажмите клавишу f, чтобы целиком поместить ее в границах экрана. Запустите интерактивную фотореалистичную визуализацию, нажав третью слева кнопку на панели инструментов окна Render View (Визуализатор), и выделите рамкой область, которая будет повторно визуализироваться при каждом редактировании материала.
Если в рабочей области окна Hypershade (Редактор узлов) не видна одна из частей, нажмите кнопку Show Top and Bottom Tabs (Показывать верхнее и нижнее окна), расположенную в правом верхнем углу панели инструментов этого окна. Дважды щелкните на образце материала DoorKnob_Blinn, чтобы открыть окно диалога Attribute Editor (Редактор атрибутов). Щелкните на кнопке с рисунком в виде шахматной доски, расположенной справа от имени параметра Diffuse (Цвет диффузного рассеяния), чтобы открыть окно диалога Create Render Node (Создать узел визуализации). Убедитесь, что переключатель раздела 2D Textures (Двумерные текстуры) стоит в положении Normal (По нормали). В этом случае размещение карты текстуры будет происходить с учетом геометрии поверхности. Затем щелкните на кнопке Fractal (Фрактал). В окне диалога Attribute Editor (Редактор атрибутов) появятся параметры выбранной текстуры. Обратите внимание на обновление окна Render View (Визуализатор).
Соответствующим образом изменив параметры процедурной текстуры, можно создать впечатление потертого материала. В разделе Fractal Attributes (Параметры фрактала) присвойте параметрам Amplitude (Амплитуда), Threshold (Порог), Ratio (Пропорциональность) и Frequency Ratio (Частотный коэффициент) значения 0,5, 0,1, 0,77 и 8 соответственно, как показано на Рисунок 8.16. Перейдите на вкладку place2dTexture и в разделе 2D Texture Placement Attributes (Параметры размещения двумерной текстуры) введите во второе поле справа от имени параметра Repeat UV (Повторение по UV-осям) значение 0,15. И напоследок введите во второе поле, расположенное справа от параметра Noise UV (Зашумление по UV-осям), значение 0,75. Последнее действие приведет к появлению более закрученного фрактала. Закройте окно диалога Attribute Editor (Редактор атрибутов).
Назначение текстур
Упражнение. Назначение текстур
Это упражнение посвящено назначению некоторым характеристикам материалов карт текстур и редактированию положения этих карт на поверхности объекта. Вы можете продолжить работу над сценой, полученной в результате выполнения первого упражнения данной главы.
Откройте окно диалога Hypershade (Редактор узлов), нажав комбинацию клавиш Shift+T. Вам понадобятся как оба окна рабочей области, так и область создания узлов. Щелкните правой кнопкой мыши на верхней панели области создания узлов и выберите в появившемся меню вариант Create Materials (Создание материалов). Средней кнопкой мыши перетащите образец раскраски Blinn (По Блинну) в нижнее окно рабочей области и дважды щелкните на нем, чтобы открыть окно диалога Attribute Editor (Редактор атрибутов).
Присвойте материалу имя checkerfloor. Щелкните на кнопке, расположенной справа от имени параметра Color (Цвет). Появится окно диалога Create Render Node (Создать узел визуализации), открытое на вкладке Textures (Текстуры), как показано на Рисунок 8.12. Эта вкладка содержит перечень всех возможных двумерных и трехмерных процедурных и обычных текстур. Щелкните на кнопке с надписью Checker (Шахматное поле), чтобы назначить указанную текстуру характеристике материала Color (Цвет).
Создание дополнительных материалов
Упражнение. Создание дополнительных материалов
До этого момента созданный материал тут же назначался объекту сцены. В этом разделе мы продемонстрируем другой способ работы с материалами. Вам предстоит назначить материалы следующим частям дома:
вертикальным элементам перил;
горизонтальным элементам перил;
внешним стенам;
фундаменту дома;
дымовой трубе;
дымоходу;
крыше.
Так как на данном этапе вы будете заниматься исключительно созданием материалов, остальные окна проекции пока не нужны. Щелкните на окне Hypershade (Редактор узлов) и нажмите клавишу Пробел, чтобы развернуть его на весь экран. Увеличение рабочего пространства увеличит продуктивность вашей работы.
Вы можете продолжить редактирование сцены, полученной в процессе выполнения предьщущего упражнения.
Примечание
Для получения дополнительного рабочего пространства можно скрыть элементы пользовательского интерфейса, воспользовавшись командой Display > Ш Elements > Hide UI Elements (Отображение > Элементы интерфейса > Скрыть элементы интерфейса). В результате исчезнут все элементы от строки состояния до строки подсказки. Восстановить элементы интерфейса можно, выбрав в том же самом меню команду Restore UI Elements (Восстановить элементы интерфейса).
Для вертикальных и горизонтальных элементов перил используем два разных материала. Выделите материал Trim_Blinn и дважды его продублируйте. Присвойте первой копии имя VertPorchRaiLBlinn, а второй — имя HorizPorchRaiL Blinn. На данный момент это все, что требовалось сделать.
Теперь на очереди стены дома. Перетащите средней кнопкой мыши вариант раскраски PhongE (Расширенная по Фонгу) из области создания узлов в нижнее окно рабочей области. Присвойте этому материалу имя Foundation_PhongE. Так как фундамент по замыслу должен быть немного влажным от росы, расширенный вариант раскраски по Фонгу подходит для создания материала наилучшим образом. Затем создайте еще один материал на основе раскраски Blinn (По Блинну) и присвойте ему имя Walls_Blinn.
Откройте редактор атрибутов для материала Foundation_PhongE. Щелкните на поле образца цвета, расположенном справа от имени параметра Color (Цвет), и присвойте параметрам Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность) значения 65, 0,45 и 0,35 соответственно, нажмите кнопку Accept (Принять). Параметр Diffuse (Цвет диффузного рассеяния) сделайте равным 0,7, а значение параметра Roughness (Шероховатость), отвечающего за фокусировку зеркальных бликов, увеличьте до 0,81. Размер зеркальных бликов сделайте равным 0,15, введя это значение в поле Highlight Size (Размер бликов). Параметру Reflectivity (Отражательная способность) присвойте нулевое значение. Напоследок щелкните на поле образца цвета, расположенном справа от названия параметра Whiteness (Белизна), который определяет цвет зеркальных бликов, и введите в поля Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность) значения 270, 0,01 и 0,2 соответственно.
Выделите материал Walls_Blinn на вкладке Materials (Материалы) окна Hypershade (Редактор узлов) и введите в поля Color R (Красный), Color G (Зеленый) и Color В (Синий) окна каналов значения 0,9, 0,68 и 0,4 соответственно. Цвет материала должен стать оранжево-коричневым.
Теперь создадим материал для трубы, используя раскраску по Ламберту. Труба состоит из кирпичей, которые не имеют никаких зеркальных бликов, поэтому данный тип раскраски подходит для них наилучшим образом. Перетащите средней кнопкой мыши образец раскраски Lambert (По Ламберту) из области создания узлов в нижнее окно рабочей области Hypershade (Редактор узлов) и присвойте новому материалу имя ChimneyBase_Lambert. Продублируйте его и присвойте копии имя ChimneyPipe_Lambert. Выделите материал ChimneyBase_Lambert на вкладке Materials (Материалы). Откройте редактор атрибутов и присвойте материалу тускло-красный цвет. Для этого щелкните на поле образца цвета, расположенном справа от имени параметра Color (Цвет), и введите в поля параметров Saturation (Насыщенность) и Value (Интенсивность) значения 0,6 и 0,5 соответственно. Затем выделите на вкладке Materials (Материалы) материал ChimneyPipe_ Lambert и проделайте вышеописанную операцию, используя параметры 0,4 и 0,5.
Последний материал, который нужно создать, предназначен для крыши. Пока вы еще не использовали раскраску по Фонгу, которая идеально подойдет в данном случае, когда требуется имитировать влажный материал. Перетащите средней кнопкой мыши образец раскраски Phong (По Фонгу) из области создания узлов в нижнее окно рабочей области Hypershade (Редактор узлов) и присвойте новому материалу имя Roof_Phong. В окне каналов введите в поля Color R (Красный), Color G (Зеленый) и Color В (Синий) значения 0,34, 0,312 и 0,102 соответственно. В итоге получится темный зеленовато-коричневый цвет.
В данный момент вкладка Work Area (Рабочая область) перенасыщена материалами и желательно привести ее в порядок. Щелкните в произвольном месте рабочей области правой кнопкой мыши и выберите в появившемся контекстном меню команду Graph > Rearrange Graph (Узлы > Упорядочить узлы). Вид окна Hypershade (Редактор узлов) после этой операции показан на Рисунок 8.10. Теперь у вас есть набор материалов, которые можно назначить соответствующим объектам сцены. Сохраните сцену.
Создание стандартных материалов
Упражнение. Создание стандартных материалов
Стандартные материалы имеют однородный цвет по всей поверхности объекта. В этом упражнении мы используем окно диалога Hypershade (Редактор узлов) для создания таких материалов и назначим их объектам.
Вид окна диалога Color Chooser в режиме HSV
Рисунок 8.5 Вид окна диалога Color Chooser в режиме HSV
Вкладки нижнего окна
Вкладки нижнего окна
Нижнее окно по умолчанию открыто на вкладке Work Area (Рабочая область), в которой производится создание новых материалов. В момент создания сцены в верхнем окне практически нет элементов. Следовательно, первое, что вам нужно сделать после открытия окна диалога Hypershade (Редактор узлов), поместить новый материал в рабочую область и назначить его объекту сцены. Затем перейдите на вкладку Shader Library (Библиотека материалов) и выберите подходящий вариант раскраски. Позже в этой главе мы объясним, как создать дополнительные вкладки и как поместить созданный вами материал в библиотеку.
Вкладки рабочей области
Вкладки рабочей области
Рабочая область может содержать практически любое окно. В данном разделе будет описан ее вид но умолчанию, при котором вкладки верхнего окна используется для показа существующих материалов, а вкладки нижнего — для их создания и редактирования. Освоив работу с окном диалога Hypershade (Редактор узлов), вы сможете настраивать окна рабочей области нужным вам образом и даже создавать дополнительные вкладки, что позволит одновременно редактировать несколько материалов.
Вкладки верхнего окна
Вкладки верхнего окна
Верхнее окно содержит элементы, которые уже являются частью текущей сцены. Оно разделено на шесть вкладок, по типам элементов: Materials (Материалы), Textures (Текстуры) (которые являются частью существующих материалов), Utilities (Служебные элементы), Cameras (Камеры) и Projects (Проекты) (для просмотра папки проекта в поисках остальных файлов). В этой области можно выделить любой созданный ранее элемент сцены, для того чтобы:
продублировать его и получить возможность внести небольшие изменения в оригинал;
отредактировать его;
выделить объект, которому был назначен определенный материал, или назначить материал выделенным в данный момент объектам;
сделать объекты освещаемыми определенным источником света или исключить их из освещения;
повторно использовать существующую текстуру для создания нового материала;
экспортировать материалы в другую сцену.
Во всех перечисленных случаях двойной щелчок на образце элемента приводит к открытию окна диалога Attribute Editor (Редактор атрибутов).
Ввод параметров фрактала в окне диалога Attribute Editor
Рисунок 8.16. Ввод параметров фрактала в окне диалога Attribute Editor
Сфокусируйтесь на объекте DoorG и повторите интерактивную фотореалистичную визуализацию. Дважды щелкните на образце материала Door_Blinn в окне Hypershade (Редактор узлов), чтобы открыть окно диалога Attribute Editor (Редактор атрибутов). Вам предстоит повторить вышеописанную операцию, заменив текстуру Fractal (Фрактал) текстурой Noise (Случайные пятна). В разделе Solid Fractal Attributes (Параметры случайных пятен) введите в поля Amplitude (Амплитуда), Ratio (Пропорциональность), Frequency Ratio (Частотный коэффициент) и Depth Мах (Количество итераций) значения 0,8, 0,35, 20 и 8 соответственно, как показано на Рисунок 8.17. В раскрывающемся списке Noise Type (Тип случайных пятен) выберите вариант Wispy (Дымка). Затем перейдите на вкладку place2dTexture и введите в первое поле, расположенное справа от имени параметра Repeat UV (Повторение по UV-осям), значение 4. Закройте редактор атрибутов и скройте слой DoorL, так как на этом назначение материалов двери закончено.
Продвинутая 3D графика в пакете Maya
Цвет
Цвет
Каждый источник света может иметь свой собственный цвет. Для его изменения используется окно диалога Color Chooser (Выбор цвета), вызываемое щелчком на поле образца цвета, расположенном справа от имени параметра Color (Цвет). Кроме того, существует возможность назначить данному параметру карту текстуры. В этом случае источник света действует как проектор. Если же анимировать параметры карты текстуры, источник света будет представлять собой проекционный аппарат для фильма.
Имитация теней в Maya
Имитация теней в Maya
Режим формирования теней в Maya может быть включен или выключен по вашему желанию. По умолчанию он выключен. Соответственно, хотя поверхности освещенных объектов затенены, то есть ближняя к источнику света сторона объекта имеет более яркий цвет, чем противоположная, сами объекты не отбрасывают теней. Кроме того, это значит, что свет беспрепятственно проходит сквозь поверхности, освещая даже объекты, расположенные в тени других объектов.
Наличие тени помогает яснее определить размер объекта, его положение и ориентацию в пространстве. Соответственно, формирование теней позволяет определить пространственные соотношения между объектами. Отсутствие теней в сцене приводит к появлению в результате визуализации плоской картинки, то есть тени добавляют сцене глубину и делают ее более реальной. Особенно это касается сцен в интерьере. Еще раз посмотрите на Рисунок 9.8. Как вы видите, в данном случае сложно сказать, стоят ли объекты на поверхности или же парят в пространстве между камерой и опорной плоскостью.
Обычно принято использовать в сцене несколько источников света, формирующих тени, и большое количество более тусклых, «заполняющих» осветителей. Наличие теней значительно увеличивает время визуализации, особенно если тени формируются источником света типа Area (Прямоугольный) или являются трассированными. Поэтому при создании сцены с тенями руководствоваться надлежит также соображениями минимизации времени вычислений. Кроме того, тени имеют свойство выцветать при появлении дополнительных источников света с включенным свойством формирования теней, освещающих ту же самую область. В Maya существует много способов как сделать сцену более контрастной, так и уменьшить время визуализации. Рассмотрим подробнее дна основных типа теней в Maya — полученные на основе карты глубины и трассированные.
Освещение виртуального мира требует несколько
Важность освещения
Важность освещения
Освещение виртуального мира требует несколько больших усилий, чем это может показаться на первый взгляд. Причина этого лежит как в технической стороне дела, так и в творческих аспектах. Во-первых, в большинстве случаев необходимо создать эффект реальности происходящего несмотря на то, что источники света в Maya отличаются от реальных.. В частности, свет не отражается от поверхностей объектов. А ведь именно поэтому в реальности единственная лампочка может осветить всю комнату, вплоть до областей, которые скрыты от прямых лучей света. Однако в Maya такие области останутся совершенно темными. Соответственно, диффузное рассеяние света необходимо имитировать, введя в сцену дополнительные осветители. Кроме того, в Maya можно смоделировать такие экзотические ситуации, как отрицательное освещение (negative lights), когда источник света не увеличивает, а уменьшает освещенность сцены, и включение объектов в освещение (light linking), когда источником освещаются только специально указанные объекты. Эти функции дают возможность создать действительно впечатляющие сцены. Кроме того, это бывает полезно при комбинации визуализированного изображения с реальным кадром. Ведь в этом случае освещенность обеих сцен должна совпадать как можно точнее.
Что же касается творческих аспектов, то нельзя не заметить, что освещение формирует настроение сцены. Если вы пытаетесь создать мрачную, внушающую страх сцену, имеет смысл сделать освещение тусклым. Чтобы вызывать у зрителя чувство тревоги, можно использовать мерцающий свет. При поиске приемов освещения определенной сцены вспомните фильмы соответствующего жанра.
Получившаяся в результате сцена стоит потраченных на нее времени и усилий. Искусное освещение создает контрасты между объектами, усиливает цвета и позволяет настраивать тени объектов. Не стоит забывать о том, что освещение может приводить к появлению теней, а также изменять вид материалов и раскраски объектов. |
Интенсивность
Интенсивность
Параметр Intensity (Интенсивность) отвечает за яркость источника света. Ему можно присвоить как положительное, так и отрицательное значение. Увеличение интенсивности света приводит к увеличению освещенности.
Обычно этому параметру присваивается значение в диапазоне от 0 до 1, что приводит к освещенности средней интенсивности. При имитации солнечного света значение интенсивности может превосходить 1,5. Если параметр Decay Rate (Скорость спада) отличен от нуля, интенсивность света, скорее всего, должна быть увеличена, так как она начинает быстро снижаться с расстоянием. По умолчанию все источники света в Maya имеют нулевое значение этого параметра, то есть интенсивность освещения объектов не зависит от того, на каком расстоянии они расположены.
Присвоив параметру Intensity (Интенсивность) отрицательное значение, вы получите эффект удаления света из сцены. Если одну из областей сцены нужно сделать черной, несмотря на расположенные рядом источники света, решить проблему поможет именно источник света с отрицательным значением параметра Intensity (Интенсивность).
Использование источников света
h2>Типы источников света. Понимание отличий одного источника света от другого необходимо для правильного выбора источника.
Параметры источников света. После изучения основных параметров источников света, а также ряда дополнительных переменных программы Maya вам будет проще получить необходимый результат.
Интерактивная фотореалистичная визуализация. Настройка освещения сцены невозможна без интерактивной фотореалистичной визуализации. Вы быстро убедитесь в ценности этого инструмента.
Тени. В Maya существует два различных типа теней. Знание различий между ними позволит вам сэкономить массу времени.
Ключевые термины
Направленный свет (Directional Light). Источник света в Maya, распространяющий параллельные лучи света. Используется, например, для имитации солнечных лучей.
Рассеянный свет (Ambient light). Источник света, освещающий все объекты сцены, независимо от их положения. Не имеет значка источника света.
Точечный источник света (Point light). Источник света, испускающий лучи из одной точки равномерно во всех направлениях.
Прямоугольный источник света (Area light). Источник света, испускающий лучи не из одной точки пространства, а из прямоугольной области.
Прожектор (Spot light). Источник света, лучи которого расходятся коническим пучком из одной точки.
Световой конус (Cone angle). Параметр прожектора, определяющий область распространения световых лучей.
Область полутени (Penumbra angle). Параметр прожектора, определяющий размывание границы между областями света и тени.
Скорость спада (Decay Rate). Параметр источников света типа Area (Прямоугольный), Spot (Прожектор) и Point (Точечный), определяющий скорость уменьшения интенсивности света с расстоянием.
Свечение (Light Glow). Оптический эффект, позволяющий имитировать сияющие ореолы, возникающие на фотографиях или видео вокруг ярких источников света или ярких бликов на поверхности объектов.
Карты теней (Depth Map Shadows). Тени, рассчитанные как проекции объектов на затеняемые поверхности сцены.
Трассированные тени (Raytraced Shadows). Тени, сформированные как зоны, недоступные для лучей света, путь которых отслеживается от источника до глаз наблюдателя.
Карта глубины
Карта глубины
В Maya существует возможность формирования теней на основе так называемой карты глубины (Depth Map), которая содержит информацию о расстоянии от источника света до поверхности, которую он освещает. Программа вычисляет эту карту при первой же визуализации, и впоследствии она используется при расчете теней. Благодаря наличию карты теней визуализатор получает информацию об освещенности различных областей сцены, указывая, насколько далеко могут распространяться лучи света. В итоге они останавливаются на поверхностях объектов.
Тени, полученные на основе карты глубины, обычно хорошо имитируют реальные, при этом значительного увеличения времени визуализации не происходит. Они обычно имеют более размытые края, что выглядит более натурально, чем резкие трассированные тени. Впрочем, при желании можно получить примерно такой же уровень резкости теней, увеличив значение параметра Dmap Resolution (Разрешение карты глубины). Основным недостатком этого метода является отсутствие возможности создания мягких теней и невосприимчивость к прозрачности объектов.
Для источников света типа Point (Точечный), Ambient (Рассеянный) и Area (Прямоугольный) карта глубины работает особым образом. Дело в том, что для создания теней с помощью карты необходимо квадратное растровое изображение, а упомянутые источники света распространяют лучи во всех направлениях. Соответственно, приходится создавать набор карт, покрывающий всю область тени. В Maya для этих случаев используются кубические карты теней, то есть шесть теней, расположенных на шести сторонах куба. Этот процесс требует в шесть раз большего объема оперативной памяти, что может быть связано с увеличенным размером карты. В общем случае желательно, чтобы большинство теней создавалось источниками света типа Spot (Прожектор) или Directional (Направленный). При этом можно прямо указать направление лучей света и падения теней.
Новое положение источника света и его мишени
Рисунок 9.1. Новое положение источника света и его мишени
Общие параметры источников света
Общие параметры источников света
В верхней части окна диалога Attribute Editor (Редактор атрибутов) для источников света находится набор параметров, которые мы еще не обсуждали: Color (Цвет), Intensity (Интенсивность) и флажки Illuminates by Default (Освещение по умолчанию), Emit Diffuse (Диффузный компонент) и Emit Specular (Свечение зеркальных бликов). Эти параметры вам часто придется использовать для редактирования источника света.
Окно диалога Attribute Editor
Рисунок 9.3. Окно диалога Attribute Editor является простейшим способом доступа к редактированию параметров источника света
Освещение по умолчанию
Освещение по умолчанию
По умолчанию источники света автоматически освещают все объекты сцены. Снятие флажка Illuminates by Default (Освещение по умолчанию) приводит к тому, что встроенный источник света перестает освещать объекты сцены, если вы вручную не установите между ними связь. Эта операция выполняется с помощью окна диалога Relationship Editor (Редактор связей). Для его вызова используйте команду Window > Relationship Editors > Light Linking (Окно > Редакторы связей > Связывание источников света). Затем выделите источник света и объекты, которые будут им освещаться, как показано на Рисунок 9.11. Объекты, включенные в освещение, выделены серым.
Параметры карты глубины
Параметры карты глубины
При работе с картами теней можно настраивать следующие параметры:
Shadow Color (Цвет тени). Этот параметр относится к обоим типам теней в Maya. Его изменение приводит к изменению цвета тени после визуализации. Сделав цвет тени немного ярче черного, можно имитировать диффузное рассеяние света. Кроме того, данному параметру можно назначить карту текстуры, используя способ, описанный в главе 8.
Dmap Resolution (Разрешение карты глубины). Определяет аккуратность теней, сформированных на основе карты глубины. Карты представляют собой квадратные изображения, поэтому установив этот параметр равным 1024, вы получите карту теней с разрешением 1024x1024 пиксела. При очень больших значениях этого параметра у компьютера может не хватить оперативной памяти на обработку такой карты. Если же данный параметр имеет малое значение, у теней могут образоваться зубчатые края.
Правда, это имеет отношение только к окончательному изображению, полученному в результате визуализации. Этот эффект можно завуалировать, увеличив значение параметра Dmap Filter Size (Размер фильтра карты глубины). Увеличение разрешения тоже приводит к исчезновению зазубренных краев, но формирует более резкие границы тени.
Dmap Filter Size (Размер фильтра карты глубины). Непосредственно влияет на состояние границы тени. Удачно скомбинировав значение этого параметра с величиной разрешения карты глубины, можно сгладить размытую границу тени, избавившись от эффекта. Имейте в виду, что увеличение размера фильтра карты глубины сопровождается увеличением времени визуализации, поэтому без крайней необходимости не присваивайте данному параметру значений, превосходящих 3.
Dmap Bias (Смещение карты глубины). Когда с помощью карты глубины формируются длинные тени, иногда они могут быть смещены относительно объекта, который их отбрасывает. Смещение карты глубины регулирует расстояние между тенью и объектом. Как правило, изменение заданного по умолчанию значения требуется очень редко. Например, при имитации теней, возникающих при заходящем Солнце.
Параметры прожектора
Параметры прожектора
Каждый из пяти типов источников света имеет свои особенности и свои параметры. Понимание основных различий между ними является ключом к правильному выбору источника света для каждой сцены. Кроме того, это позволяет сэкономить время при работе над сценой. Необходимо четко представлять себе, к какому результату приведет изменение каждого из параметров. Вид окна диалога Attribute Editor (Редактор атрибутов) для источника света Spot Light (Прожектор) показан на Рисунок 9.3.
Параметры трассированных теней
Параметры трассированных теней
Перечислим основные параметры, с которыми вам придется работать при использовании трассированных теней:
Light Radius (Радиус источника). Устанавливает воображаемый размер круга, испускающего лучи света, который является имитацией источника света типа Area (Прямоугольный). Имейте в виду, что отличие данного параметра от нуля приводит к формированию размытых теней и увеличению времени визуализации сцены.
Shadow Rays (Лучи тени). Отвечает за вид размытых теней. При малых значениях данного параметра тени будут пятнистыми, зато процесс визуализации ускорится. Он похож на параметр Dmap Filter Size (Размер фильтра карты глубины), который регулирует состояние границы тени, полученной на основе карты глубины, тем, что его увеличение приводит к снижению зернистости тени. При этом увеличение значения параметра Shadow Rays (Лучи тени) сильно замедляет процесс визуализации, поэтому старайтесь использовать минимальное значение, необходимое для получения приемлемого результата.
Ray Depth Limit (Предел глубины луча). Этот параметр на единицу меньше числа отражений и преломлений, после которых луч еще в состоянии формировать тень. Вы можете увеличить его значение, если хотите дать лучам света возможность отражаться и преломляться перед тем, как сформировать тень.
Подведем итоги
Подведем итоги
Освещение, вместе с назначением материалов, определяет окончательный вил объектов после визуализации. Без знаний основ создания и редактирования источников света невозможно создать впечатляющую сцену. В этой главе вы познакомились со следующими понятиями:
Различные типы источников света. Теперь вы понимаете разницу между источниками света типа Ambient (Рассеянный свет), Spot (Прожектор), Point (Точечный), Directional (Направленный) и Area (Прямоугольный) и знаете, какой эффект оказывает каждый из них на освещенность сцены.
Размещение источника света в сцене. Работа с источниками света в Maya ничем не отличается от работы с другими объектами. С помощью инструмента Light Manipulator (Управление источником света) можно легко изменить положение опорной точки или мишени источника.
Основные параметры источников света. Каждый источник света в Maya имеет набор параметров, редактируя которые можно менять освещенность сцены и вид самого источника. Постепенно вы научитесь предсказывать, к каким результатам приведет изменение значения того или иного параметра, что позволит экономить время при работе над освещением сцен.
Трассированные тени и использование карт глубины. Понимание разницы между двумя основными типами теней в Maya позволит вам сделать правильный выбор при необходимости введения теней в сцену.
Интерактивная фотореалистичная визуализация. При создании анимации скорость этого процесса играет немаловажную роль. С помощью интерактивной фотореалистичной визуализации вы можете практически мгновенно отслеживать результаты редактирования источников света.
Прожектор освещает только область
Рисунок 9.2. Прожектор освещает только область, попавшую внутрь светового конуса

Примечание
ПРИМЕЧАНИЕ
Предупреждение о том, что изображения не в формате IFF не поддерживаются, которое может появиться в командной етроке, связано с форматом выходного файла визуализации, установленным в раскрывающемся списке Image Format (Формат изображения) раздела Image File Output (Выходной файл) окна диалога Render Globals (Общие параметры визуализации). На сам процесс интерактивной фотореалистичной визуализации это никакого влияния не оказывает.
Если в данный момент источник света spotLightl не выделен, откройте окно диалога Outline (Структура), выделите его и затем, вернувшись в окно проекции, нажмите комбинацию клавиш Ctrl+a. Появится окно диалога Attribute Editor (Редактор атрибутов), которое нужно открыть на вкладке SpotLightShapel. Вы получили доступ к параметрам этого источника света.
Рассеянный свет
Рассеянный свет
Источник света типа Ambient (Рассеянный) используется для равномерного освещения поверхностей всех объектов и создания общего светового фона сцены. Он не имеет ничего общего с рассеянным светом в реальности, который формируется за счет диффузного рассеяния лучей света поверхностями объектов. Это своего рода самосвечение, равномерно освещающее всю сцену сразу. Поэтому осветитель данного типа необходимо использовать очень осторожно и только в особых случаях. Иначе ваша сцена легко может стать плоской и высветленной. В Maya для рассеянного света включается режим формирования теней. Именно эта возможность делает рассеянный свет своеобразным эквивалентом точечного источника света. Существует параметр Ambient Shade (Уменьшение рассеивания), равенство которого единице приводит к превращению рассеянного источника света в точечный.
Редактирование освещенности с
Редактирование освещенности с помощью интерактивной фотореалистичной визуализации
Чем больше вы будете работать с источниками света, тем полнее оцените преимущества процесса интерактивной фотореалистичной визуализации. Возможность немедленно увидеть результаты редактирования параметров источника света или его перемещения помогает сэкономить время при работе над сценой. Кроме всего прочего, освещение изменяет вид назначенных объектам материалов. Например, освещение материала, созданного на основе раскраски Lambert (По Ламберту), не приводит к появлению зеркальных бликов, в то время как материал, созданный на основе раскраски Blinn (По Блинну), может в результате измениться совершенно неприемлемым образом. С помощью окна Render View (Визуализатор) можно легко настраивать параметры источников света при работе с различными материалами. Рассмотрим этот процесс на примере.
Откройте окно Render View (Визуализатор), выбрав в главном меню или в меню оперативного доступа команду Window > Rendering Editors > Render View (Окно > Редакторы визуализации > Визуализатор). Для начала необходимо установить разрешение тестовой визуализации. По умолчанию оно равно 640x480. Если у вас не очень мощный компьютер, процесс визуализации может занять больше времени, чем хотелось бы. Для данного упражнения уменьшите разрешение, щелкнув правой кнопкой мыши в любой точке окна Render View (Визуализатор) и выбрав в появившемся контекстом меню команду Options > Test Resolution > 50 % Globals (320x240) (Параметры > Разрешение тестовой визуализации > 50 % от общего (320x240)).
Общие параметры визуализации настроены таким образом, чтобы визуализировалось окно проекции RenderCamera (Камера). Нажмите третью слева кнопку на панели инструментов окна Render View (Визуализатор) и, когда процесс визуализации будет завершен, выделите рамкой всю область визуализации. Теперь вы можете менять параметры источника света spotLightl и наблюдать, как изменяется при этом сцена (Рисунок 9.2).
Результат настройки оптических
Рисунок 9.8. Результат настройки оптических эффектов для точечного источника света
Создайте слой с именем PoitnLight_L и поместите в него точечный источник света. Измените значение его параметра Visibility (Видимость) на ноль.
Сохраните сцену.
Результат размещения мишени в дальнем углу комнаты
Рисунок 9.9. Результат размещения мишени в дальнем углу комнаты
Выберите в меню оперативного доступа команду Render > IPR Render Current Frame (Визуализация > Интерактивная фотореалистичная визуализации текущего кадра). После завершения процесса внимательно посмотрите на освещение. Обратите внимание, что свет, поначалу очень сильный, постепенно спадает до нуля по мере увеличения расстояния до его источника. В данном случае эффект наблюдается, даже если параметр Decay Rate (Скорость спада) имеет заданное по умолчанию значение No Decay (Отсутствует). Поскольку свет источника Area (Прямоугольный) рассеивается с расстоянием, его интенсивность падает, так как тем же самым количеством световых лучей приходится освещать большую область. Кроме того, важное значение имеет положение мишени, точно так же, как и в случае с источником света типа Spot (Прожектор).
Примечание
ПРИМЕЧАНИЕ
Если вы считаете, что было визуализировано не то окно проекции, которое нужно, щелкните правой кнопкой мыши в любой точке окна Render View (Визуализатор) и выберите в появившемся контекстном меню команду IPR > IPR Render > RenderCamera (Интерактивная фотореалистичная визуализации > Визуализировать > Камера).
Переместите мишень источника света areabghtl в центр группы объектов, опустив ее на уровень поверхности. Теперь комната будет более интенсивно освещена в передней части благодаря изменившемуся углу наклона источника света.
Теперь при помощи клавиши r попытайтесь равномерно снизить интенсивность источника света до величины 0,5. Отслеживайте значение в соответствующих полях окна каналов. После просмотра результата интерактивной фотореалистичной визуализации для сравнения измените интенсивность источника света до величины 2.
Введите в поле параметра Visibility (Видимость) значение 0 и, создав новый слой с именем AreaLight_L, поместите туда источник света areaLightl. Сохраните сцену.
Источник света типа Area (Прямоугольный) можно использовать для имитации диффузного рассеяния света поверхностями объектов. Наиболее часто этот прием используется для ярко освещенных плоских поверхностей, таких как потолок, а также для сильно окрашенных поверхностей, которые не только отражают, но и слегка окрашивают цвет. Имейте в виду, что, создав в сцене источник света данного типа, вы значительно замедлите процесс визуализации.
Результат включения формирования
Рисунок 9.10. Результат включения формирования теней на основе карты глубины для источника света типа Spot
Установка связи между
Рисунок 9.11. Установка связи между источником света и объектами в окне диалога Relationship Editor
Скорость спада
Скорость спада
Параметр Decay Rate (Скорость спада) является одной из характеристик источников света типа Spot (Прожектор), Area (Прямоугольный) и Point (Точечный) и определяет скорость снижения интенсивности света по мере удаления от источника. Раскрывающийся список Decay Rate (Скорость спада) в окне диалога Attribute Editor (Редактор атрибутов) содержит несколько вариантов данного параметра:
No Decay (Отсутствует). Интенсивность света не изменяется с расстоянием. Свет достигает всех объектов сцены.
Linear (Линейная). Интенсивность испускаемого света линейно уменьшается по мере увеличения расстояния до источника. Этот тип затухания используется наиболее часто, так как его проще всего контролировать. При этом нет необходимости сильно увеличивать интенсивность света, чтобы компенсировать его быстрый спад.
Quadratic (Квадратичная). В этом режиме имитируется поведение реальных источников света. Свет ослабевает обратно пропорционально квадрату расстояния до источника, что примерно соответствует действительности. В этом режиме параметр Intensity (Интенсивность) должен быть существенно увеличен.
Cubic (Кубическая). Интенсивность света уменьшается быстрее, чем в реальности. Освещенность объектов ослабевает обратно пропорционально кубу расстояния до источника. В итоге освещенная область получается очень небольшой. Этот тип затухания используется для моделирования источников света, окруженных полной темнотой. При этом, чтобы свет появился при визуализации, интенсивность должна быть весьма значительной.
Совет
СОВЕТ
Для редактирования затухания света можно использовать интерактивную фотореалистичную визуализацию.
Тени формируемые источником света типа Area
Тени, формируемые источником света типа Area
Если вы включили для источника света типа Area (Прямоугольный) возможность формирования теней, то они будут вычисляться на основе размера области, испускающей световые лучи. Аналогичный результат получается для точечных источников света после увеличения значения параметра Light Radius (Радиус источника).
Типы источников света в Maya
Типы источников света в Maya
В Maya существует несколько различных типов источников света, каждый из которых имеет свои собственные свойства и область применения: Directional (Направленный), Ambient (Рассеянный), Point (Точечный), Spot (Прожектор) и Area (Прямоугольный). Значки, изображающие эти источники света в сцене.
Трассированные тени
Трассированные тени
В общем случае на визуализацию сцены с трассированными тенями уходит больше времени, но зато она требует меньшего количества оперативной памяти. Кроме того, появляется возможность создания размытых теней, а также теней от прозрачных объектов. Чтобы тени этого типа появились после визуализации, необходимо включить процедуру трассирования, установив флажок Raytracing (Трассирование) в окне диалога Render Globals (Общие параметры визуализации).
Источники типа Spot (Прожектор), Directional (Направленный), Ambient (Рассеянный свет) и Point (Точечный) могут формировать такие же тени, как и источник света Area (Прямоугольный). В этом случае размытые тени создаются путем увеличения радиуса источника света. Неточечные источники света формируют размытые тени (так называемые полутени), так как некоторое количество лучей света оказывается заблокированным расположенным на их пути объектом. В итоге лучи как бы огибают объект, частично освещая пространство за ним. В результате создается впечатление медленного перехода от тени к ее отсутствию.
Прозрачные объекты формируют только трассированные тени. При этом цвет объекта не учитывается. Для получения цветных теней необходимо назначить карту текстуры характеристике Transparency (Прозрачность) материала. Также имейте в виду, что тени будут иметь постоянную яркость, потому что при их построении эффекты преломления света в расчет не принимаются.
Направленный свет
Упражнение. Направленный свет
Источник света типа Directional (Направленный) является одним из встроенных осветителей, использующихся каждый раз при создании новой сцены. Также с его помощью хорошо имитировать удаленные источники света, например Солнце, с помощью которых выполняется освещение всей сцены, а не ее отдельных участков. В данный момент в сцене имеется слой SpotLight_L, содержащий источник света spotLightl. Даже если сделать его невидимыми, прожектор все равно будет вносить вклад в итоговое изображение сцены. Соответственно, чтобы получить возможность наблюдать исключительно действие направленного источника света, необходимо как-то выключить прожектор. Для этого выделите его в окне диалога Outliner (Структура) и в окне каналов введите в поле параметра Visibility (Видимость) значение 0, что эквивалентно выключению источника света.
Освещение дома
Упражнение. Освещение дома
В этом упражнении вы добавите несколько источников света, создавая освещение для сцены с домиком, которому в предыдущей главе были назначены материалы.
Для начала выделите все источники света в окне диалога Outliner (Структура) и удалите их, чтобы начать освещение сцены с самого начала.
Начнем с создания верхнего света. Выберите команду Create > Light t Directional Light (Создать > Источник света > Направленный) и присвойте источнику света имя toplight. Введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов значения -25, 1440 и -20 соответственно. Теперь нужно повернуть осветитель под определенным углом. Введите в поля Rotate X (Поворот относительно оси X), Rotate Y (Поворот относительно оси Y) и Rotate Z (Поворот относительно оси Z) значения -270, -50 и -180 соответственно, чтобы направить его вниз. Во все поля параметра Scale (Масштаб) введите значение 500, увеличив тем самым размеры значка источника света. Откройте окно диалога Attribute Editor (Редактор атрибутов) и введите в поле параметра Intensity (Интенсивность) значение 0,2. В разделе Shadows (Тени) установите флажок Use Depth Map Shadows (Использовать карту теней). Параметру Dmap Resolution (Разрешение карты глубины) присвойте значение 1024. Снимите флажок Use Dmap Auto Focus (Использовать автоматическую фокусировку карты глубины), чтобы тени оставались на своих местах при смене угла обзора камеры. Сделайте параметр Dmap Width Focus (Ширина фокусировки карты глубины) равным 400. В этом случае дом попадет в область формирования теней.
Теперь пришло время для создания заполняющих источников света. Воспользуйтесь командой Create > Light > Spot Light (Создать > Источник света > Прожектор) и присвойте полученному источнику имя front_fill. Введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов значения 3200, 570 и -1550 соответственно. В поля Rotate X (Поворот относительно оси X), Rotate Y (Поворот относительно оси Y) и Rotate Z (Поворот относительно оси Z) введите значения 175, 64 и 180. Всем полям параметра Scale (Масштаб) присвойте значение 500. Откройте окно диалога Attribute Editor (Редактор атрибутов) и снимите флажок Emit Specular (Свечение зеркальных бликов), чтобы исключить формирование зеркальных бликов на поверхности объектов. Сделайте величину параметра Intensity (Интенсивность) равной 0,2, а параметру Cone Angle (Световой конус) присвойте значение 90.
Повторите третий шаг, присвоив источнику света имя side_fill. В поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов введите числа -2100, 830 и -2600. Полям Rotate X (Поворот относительно оси X), Rotate Y (Поворот относительно оси Y) и Rotate Z (Поворот относительно оси Z) присвойте значения 167, -38 и 180. В окне диалога Attribute Editor (Редактор атрибутов) введите в поле Intensity (Интенсивность) число 0,25, а параметру Dropoff (Затухание) присвойте величину 2.
Создайте источник света типа Directional (Направленный) и присвойте ему имя main_light. В поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов введите числа 2200, 980 и 2000. Полям Rotate X (Поворот относительно оси X) и Rotate Y (Поворот относительно j.io (лава у. освещение оси Y) присвойте значения -16 и 47. В окне диалогов Attribute Editor (Редактор атрибутов) щелкните на поле образца цвета, расположенном справа от имени параметра Color (Цвет), и введите в поля Hue (Цветовой тон), Saturation (Насыщенность) и Value (Интенсивность) значения 230, 0,6 и 0,85 соответственно, чтобы придать источнику света голубоватый оттенок и создать иллюзию ночной сцены. Установите флажок Use Depth Map Shadows (Использовать карту теней) и введите в поле Dmap Resolution (Разрешение карты глубины) число 2048. Снимите флажок Use Dmap Auto Focus (Использовать автоматическую фокусировку карты глубины) и сделайте параметр Dmap Width Focus (Ширина фокусировки карты глубины) равным 8000, чтобы формирование теней происходило во всей сцене. Имейте в виду, что если в вашем компьютере недостаточно оперативной памяти, то можно уменьшить величину разрешения карты глубины для источников света toplight и main_light до 512 и 1024 соответственно. Теперь все источники света на своем месте, и вы можете приступить к визуализации первого кадра. Имейте в виду, что сначала нужно исправить маршруты доступа к файлам с картами текстур и рельефа. Выберите нужные файлы с прилагаемого к книге компакт-диска. Так как мы моделируем мир монстра, для освещения был использован мрачный свет синеватого оттенка, хотя и не настолько темный и мрачный, как это было бы в реальной ночной сцене. Именно таким способом в кино снимаются ночные сцены, потому что в противном случае зрители просто ничего не смогут разглядеть.
Теперь пришло время добавить Луну на ночное небо для завершения впечатления ночной сцены. Создайте точечный источник света, выбрав команду Create > Light > Point Light (Создать > Источник света > Точечный источник света), и присвойте ему имя moon_glow. В поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов введите значения -7500, 1500 и -4000 соответственно. Откройте окно диалога Attribute Editor (Редактор атрибутов) и снимите флажки Emit Diffuse (Диффузная компонента), Emit Specular (Свечение зеркальных бликов) и Illuminates by Default (Освещение по умолчанию), чтобы этот источник не создавал никакого света.
Раскройте раздел Light Effects (Световые эффекты) и щелкните на кнопке с рисунком шахматной доски, расположенной справа от имени параметра Light Glow (Свечение). Вы автоматически перейдете на вкладку opticalFXl. Выберите в раскрывающемся списке Glow Type (Тип свечения) вариант None (Отсутствует), а в раскрывающемся списке Halo Type (Тип ореола) — вариант Exponential (Экспоненциальный). Раскройте раздел Halo Attributes (Параметры ореола) и щелкните на поле образца цвета, расположенном справа от имени параметра Halo Color (Цвет ореола). Введите в поля Hue (Цветовой тон) и Saturation (Насыщенность) значения 230 и 0,3 соответственно, чтобы придать свечению светло-синий оттенок. Сделайте параметры Halo Intensity (Интенсивность ореола) и Halo Spread (Размер ореола) равными 0,5. Установите флажок Ignore Light (Игнорировать источники света) и закройте окно диалога Attribute Editor (Редактор атрибутов).
Теперь нужно убедиться, что данный источник света не попал за границы плоскостей отсечки камеры. Если вы находитесь не в окне проекции RenderCamera (Камера), то перейдите в него и выберите команду View > Camera Attribute Editor (Вид > Редактор атрибутов камеры) в его меню. Появится окно диалога Attribute Editor (Редактор атрибутов) с параметрами камеры, через объектив которой вы подведем итоги
наблюдаете сцену. Введите в поле параметра Far Clip Plane (Дальняя плоскость отсечки) значение 50 000. Это даст гарантии, что расположенные на значительном расстоянии источники света все равно попадут в поле зрения камеры. Источник, имитирующий Луну, нужно расположить достаточно далеко, чтобы при изменении угла обзора сцены его положение оставалось статичным. Ведь реальная Луна остается на одном месте, из какой бы точки вы ни смотрели на пейзаж.
Итак, получилась замечательная мрачная картинка, изображающая залитый лунным светом домик монстра, как показано на Рисунок 9.12.

Рисунок 9.12. Вид сцены после того, как к ней были добавлены источники света
Попытайтесь самостоятельно добавить источники света в сцену с монстром, которого вы смоделировали в главе 7, и затем визуализируйте сцену. Освещение персонажа может быть весьма забавным занятием и с его помощью можно придать модели весьма эффектный вид. Источники света предназначены не только для освещения объектов, но и для подчеркивания их формы. Применяя знания, полученные в этой главе, вы сможете эффективно осветить фигуру монстра. Используйте принцип освещения с трех точек, о котором шла речь в главе 1. Возможный результат показан на Рисунок 9.13.

Рисунок 9.13. Монстр, созданный в главе 7, был освещен источниками света, расположенными в трех различных точках
Параметры прожектора
Упражнение. Параметры прожектора
Изучение приемов работы с источниками света необходимо производить в интерактивном режиме. Вам предстоит создать их для простой сцены, содержащей объекты-примитивы, а затем с помощью визуализации понаблюдать за результатами редактирования параметров этих источников. Для начала исследуем свойства прожектора — пожалуй, одного из наиболее часто используемых источников света. При его настройке используется большое количество параметров. Испускаемый им свет распространяется в пределах конуса. Прожектор используется для создания расходящихся лучей света, таких как, например, свет маяка.
Откройте окно программы Maya и загрузите файл ch09tut01.mb. Появится сцена с тремя объектами-примитивами, стеной и поверхностью для объектов.
Перейдите к стандартной четырехоконной конфигурации и выберите в меню оперативного доступа команду Create > Lights (Создать > Источники света). В появившемся списке источников света щелкните на квадратике, расположенном справа от названия источника света Spot Light (Прожектор). Появится окно диалога Spot Light Options (Параметры прожектора), содержащее основные пара-i метры прожектора, доступ к которым можно найти также в окне диалога
Attribute Editor (Редактор атрибутов).
Выберите в меню Edit (Правка) окна диалога Spot Light Options (Параметры прожектора) команду Reset Settings (Сбросить настройки) и нажмите кнопку Create (Создать). Источник света с именем spotLightl появится в начале координат сцены. Если окно каналов в данный момент скрыто, нажмите комбинацию клавиш Shift+C. Область, освещаемая прожектором, определяется положением его опорной точки и мишени, поэтому не стоит оставлять его в начале координат.
Нажмите клавишу t, чтобы активизировать инструмент Show Manipulator (Отображение манипулятора). Для источника света типа Spot Light (Прожектор) появляются два манипулятора. Один из них расположен в опорной точке, а второй — в месте расположения мишени. В окне проекции Тор (Вид сверху) переместите опорную точку источника света в нижний левый угол опорной плоскости.
Положение мишени при этом не изменится. Переместите ее с помощью манипуляторов в правый верхний угол опорной плоскости. В итоге нужно будет разместить источник света таким образом, чтобы линия, соединяющая его с мишенью, составляла 45 градусов с поверхностью, на которой находятся объекты.
Примечание
ПРИМЕЧАНИЕ
С помощью манипулятора можно изменять не только положение источника света и его мишени. Существует манипулятор голубого цвета, называемый Index Manipulator (Указатель) и имеющий форму перевернутой буквы Q. Он используется для перехода из одного режима в другой. С его помощью можно получить контроль над наклоном источника света, размером светового конуса и другими параметрами.
Перейдите в окно проекции Side (Вид-сбоку) и переместите опорную точку источника света на 12,5 единицы в положительном направлении оси Y. Результат показан на Рисунок 9.1.
Прямоугольный источник света
Упражнение. Прямоугольный источник света
Начиная с версии 3.0, в Maya появился источник света типа Area (Прямоугольный). Он отличается от остальных источников света тем, что его лучи исходят не из одной бесконечно малой точки в пространстве, а из ограниченной прямоугольником области, размеры которой можно менять по собственному желанию. Это дает большой простор для имитации реальных источников света, но имейте в виду, что одновременно растет и время визуализации. Применение источника света типа Area (Прямоугольный) приводит к формированию более размытых теней, чем в случае, когда источник света находится на значительном расстоянии от объекта. В Maya для освещения области применяются только двумерные, плоские источники света прямоугольной формы. Вы можете продолжить выполнение предыдущего упражнения.
Создайте источник света, выбрав в меню оперативного доступа команду Create > Lights > Area Light (Создать > Источники света > Источник, Прямоугольный). По умолчанию он имеет имя areaLightl.
Введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов значения -5,5, 5 и 5,5 соответственно.
Нажмите клавишу t, чтобы активизировать инструмент Show Manipulator (Отображение манипулятора), и в окне проекции Тор (Вид сверху) переместите мишень в дальний угол комнаты, как показано на Рисунок 9.9. Обратите внимание, что источник света находится над объектами и выровнен по горизонтали.
Работа с тенями
Упражнение. Работа с тенями
Продолжите выполнение предыдущего упражнения.
Выделите в окне диалога Outliner (Структура) источник света spotLightl и введите в поле параметра Visibility (Видимость) в окне каналов значение 1. Откройте окно диалога Attribute Editor (Редактор атрибутов) и раскройте раздел Shadows (Тени). Установите флажок Use Depth Map Shadows (Использование карты глубины) в разделе Depth Map Shadow Attributes (Параметры карты глубины).
Визуализируйте окно проекции RenderCamera (Камера), чтобы посмотреть на созданные тени. Их вид показан на Рисунок 9.10.
Редактирование параметров прожектора
Упражнение. Редактирование параметров прожектора
Первым параметром, который вам предстоит отредактировать, является угол светового конуса, изменяющийся в пределах от 0,006 до 179,994 градуса и по умолчанию равный 40 градусам. Уменьшение значения этого параметра приводит к сужению освещенной области. Вы можете продолжить выполнение предыдущего упражнения.
Введите в поле параметра Cone Angle (Световой конус) значение 60. Обратите внимание на то, как увеличилась освещенная область.
Внимательно посмотрите на границу света и тени. Чтобы сделать ее менее резкой, измените значение параметра Penumbra Angle (Область полутени). Сделайте его равным -5. В окне Render View (Визуализатор) вы увидите, как будет размыта граница светового пятна. Параметр Penumbra Angle (Область полутени) может иметь как отрицательное, так и положительное значение. Он определяет размер области затухания света, начиная с границы светового конуса. Если световой конус имеет заданную по умолчанию ширину 40 градусов, а в поле параметра Penumbra Angle (Область полутени) вы ввели значение 10, то угол распространения света в сумме будет составлять 50 градусов. При этом в промежутке от 40 до 50 градусов интенсивность света будет постепенно спадать до нуля. По умолчанию значение этого параметра равно 0 и может изменяться в пределах от -179,994 до 179,994 градуса.
Изменив параметр Dropoff (Затухание), вы получите почти тот же результат, что и при редактировании параметра Penumbra Angle (Область полутени), но на этот раз затухание начнется от центральной точки. Соответственно, интенсивность света будет постепенно ослабляться по всей площади светового конуса. Этот параметр может принимать значения от 0 до бесконечности. Он используется в случаях, когда граница света и тени слишком резка и создает ненужный контраст. В результате появляется возможность использовать прожектор не только для освещения определенной области, но и для общего освещения сцены. Введите в поле параметра Dropoff (Затухание) значение 5. Это создаст впечатление более равномерного распределения света в пределах светового конуса.
Визуализируйте окно проекции CameraRender (Камера). Результат показан на Рисунок 9.5.
Создайте новый слой с именем SpotLight_L и поместите в него источник света spotLightl. Это даст вам возможность сравнить результаты действия различных источников света.
Сохраните сцену под именем LightExamples.mb.
В сцене освещенной точечным источником
Рисунок 9.6. В сцене, освещенной точечным источником света (слева), тени радиально расходятся из одной точки
Убедитесь, что направленный источник света по-прежнему выделен. В разделе directionalLightShapel окна каналов введите в поле параметра Use Depth Map Shadows (Использовать карту теней) значение on, как показано на Рисунок 9.7. Можно просто ввести в это поле значение 1 и нажать клавишу Enter. Однако после обновления содержимого окна диалога Render View (Визуализатор) вы вообще не увидите теней. Дело в том, что для получения данных о них необходимо еще раз произвести интерактивную фотореалистичную визуализацию.
Вид сцены в результате изменения
Рисунок 9.5. Вид сцены в результате изменения параметров источника света spotLightl
Выберите в меню оперативного доступа команду Create > Lights > Directional Light (Создать > Источники света > Направленный). Это приведет к появлению в начале координат источника света directionalLightl.
Откройте окно диалога Render View (Визуализатор), выбрав в главном меню или в меню оперативного доступа команду Window > Rendering Editors > Render View (Окно > Редакторы визуализации > Визуализатор), и нажмите третью слева кнопку на его панели инструментов, чтобы запустить интерактивную фотореалистичную визуализацию. Расположение направленного источника света не оказывает влияния на освещенность объектов сцены. Имеет значение только угол, под которым он расположен. Таким образом, настройка сводится к перемещению источника света в удобное для вас место, повороту на нужный угол и масштабированию, благодаря которому его становится проще выделить. Например, при моделировании сцены, происходящей в полдень, нужно повернуть направленный источник света перпендикулярно к опорной поверхности.
Примечание
ПРИМЕЧАНИЕ
В режиме тонированной раскраски освещение объектов сцены может осуществляться тремя способами. Во-первых, с помощью встроенных осветителей, во-вторых, с использованием всех источников света, имеющихся в сцене, и в-третьих, только выделенными источниками света. Обычно используется второй способ. Выбор можно сделать с помощью команд меню Lighting (Освещение) панели инструментов окна проекции. Помните, что по-настоящему оценить результаты создания и настройки источников света можно только после визуализации.
Поместите окно диалога Render View (Визуализатор) таким образом, чтобы получить возможность редактирования источника света. На данный момент его значок практически невозможно увидеть из-за наличия опорной плоскости. Убедитесь, что источник света по-прежнему выделен, и введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов значения -7, 5 и 7 соответственно. Поворот источника света приведет к изменению угла падения световых лучей на сцену и, как следствие, к изменению освещенности. Введите в поля Rotate X (Поворот относительно оси X) и Rotate Y (Поворот относительно оси Y) значения -17 и -58 соответственно.
Вероятно, наиболее впечатляющие результаты при использовании направленного источника света получаются при включенном режиме формирования теней. Вид теней, формируемых точечным источником света, зависит от того, под каким углом он расположен по отношению к объектам. Это превосходно подходит, например, для имитации лампы, но вряд ли создаст убедительную иллюзию наличия удаленного источника света. Тени, отбрасываемые Солнцем, должны быть параллельны друг другу. Их можно получить, используя источник света типа Directional (Направленный) (Рисунок 9.6).
Включение режима использования карты теней в окне каналов
Рисунок 9.7. Включение режима использования карты теней в окне каналов
Создайте еще один слой, назвав его DirectionalLight_L, и поместите туда на правленный источник света. Измените значение его параметра Visibility (Види мость) на ноль.
Сохраните сцену.
Упражнение. Точечный источник света
В отличие от направленного источника света, лучи которого параллельны дру другу, источник света типа Point (Точечный) дает поток лучей, равномерно ис ходящих из определенной точки во всех направлениях. Он используется дл общего освещения и имитации таких осветителей, как, например, лампочка. Bы можете продолжить выполнение предыдущего упражнения.
Выберите в меню оперативного доступа команду Create > Lights > Point Light (Создать > Источники света > Точечный). Появится источник света с именем pointLightl.
Переместите этот источник света на три единицы в положительном направлении оси Y, а в разделе pointLightShape окна каналов включите режим использования карты теней, введя в поле параметра Use Depth Map Shadows (Использовать карту теней) значение on.
Теперь пришло время включить оптические спецэффекты. В Maya для этого используется специальная функция OpticalFX (Оптические эффекты), добавляющая определенные эффекты в точке расположения источника света. Обычно они связаны с линзами объективов реальных съемочных камер. Откройте окно диалога Attribute Editor (Редактор атрибутов) для точечного источника света и в разделе Light Effects (Световые эффекты) нажмите кнопку с рисунком шахматной доски, расположенную справа от имени параметра Light Glow (Свечение). Редактор атрибутов откроется на вкладке opticalFX2. Пока оставьте все параметры без изменений.
Визуализируйте сцену, и вы увидите свечение в точке расположения источника света. С'помощыо интерактивной фотореалистичной визуализации можно легко настроить вид этого свечения.
Поэкспериментируйте с параметрами оптического эффекта в окне диалога Attribute Editor (Редактор атрибутов), чтобы посмотреть, как они влияют на вид эффекта свечения. На Рисунок 9.8 показан результат выбора в раскрывающихся списках Glow Type (Тип свечения) и Halo Type (Тип ореола) варианта Rim Halo (Ободок) и установки флажка Lens Flare (Блики линз). Для остальных параметров оставлены заданные по умолчанию значения.
Влияние на диффузный компонент и зеркальные блики
Влияние на диффузный компонент и зеркальные блики
В некоторых случаях свет может испускаться только для влияния на компоненты материала Diffuse (Цвет диффузного рассеяния) или Specular (Цвет зеркальных бликов).
Для включения этих режимов используются флажки Emit Diffuse (Диффузный компонент) и Emit Specular (Свечение зеркальных бликов), расположенные в верхней части окна Attribute Editor (Редактор атрибутов). Они недоступны при работе с источником света типа Ambient (Рассеянный свет). Установка флажка Emit Diffuse (Диффузный компонент) используется при создании мягкого заполняющего освещения для имитации отражения света. Сняв флажок Emit Specular (Свечение зеркальных бликов), можно избежать появления зеркальных бликов. Если, наоборот, оставить только флажок Emit Specular (Свечение зеркальных бликов), то появится возможность имитировать освещенную поверхность металлических объектов. В этом случае формирование зеркального блика произойдет без освещения остальной поверхности.
Интерактивная фотореалистичная визуализация позволяет отследить
ВНИМАНИЕ
Интерактивная фотореалистичная визуализация позволяет отследить процесс редактирования материалов и источников света. Но она не может помочь при редактировании параметров теней, включая их разрешение. Если ваши действия не приводят к видимым изменениям, еще раз проведите интерактивную фотореалистичную визуализацию.
Введите в поле Dmap Resolution (Разрешение карты глубины) значение 128. После интерактивной фотореалистичной визуализации вы увидите появление зубчатых теней. Помните, что данный процесс не отражает результатов изменения разрешения карты глубины. Впрочем, вы сможете увидеть результат редактирования значения параметра Dmap Filter Size (Размер фильтра карты глубины).
Введите в поле параметра Dmap Filter Size (Размер фильтра карты глубины) значение 3, чтобы убрать зубчатые края теней.
Теперь пришло время исследовать трассированные тени. Снимите флажок Use Depth Map Shadows (Использование карты глубины) в разделе Depth Map Shadow Attributes (Параметры карты глубины) окна диалога Attribute Editor (Редактор атрибутов). Тени от объектов должны исчезнуть.
Раскройте раздел Raytrace Shadow Attributes (Параметры трассированных теней) и установите флажок Use Raytrace Shadows (Использование трассированных теней). Однако появления теней в визуализаторе вы не увидите. Щелкните правой кнопкой мыши в произвольной точке визуализатора и выберите в появившемся контекстном меню команду Options > Render Globals (Параметры > Общие параметры визуализации). В разделе Raytracing Quality (Качество трассирования) появившегося окна диалога установите флажок Raytracing (Трассирование). Теперь у вас включен режим формирования трассированных теней, а также эффектов отражения и преломления света.
Закройте окно диалога Render Globals (Общие параметры визуализации) и снова запустите интерактивную фотореалистичную визуализацию. Как легко заметить, тени по-прежнему не появились. В строке подсказки при этом отображается надпись Error:// IPR does not support raytracing. Turn off raytracing in Render Globals and select a new region. //. Это объясняет, почему интерактивная фотореалистичная визуализация не дает желаемого результата. Чтобы посмотреть на трассированные тени в действии, сначала необходимо провести обычную визуализацию.
Нажмите первую слева кнопку на панели инструментов окна диалога Render View (Визуализатор). Процесс визуализации займет немного больше времени, чем при использовании теней, сформированных на основе карты глубины. На этот раз тени будут иметь очень резкие края. Обратите внимание, что тени от объектов, материалам которых была назначена карта рельефа, также изменились.
Введите в поле параметра Light Radius (Радиус источника) значение 1,25. Повторная визуализация покажет размывание границ теней. Увеличьте масштаб, и вы заметите, что их структура имеет зернистый характер. Если приглядеться, то можно обнаружить, что зернистость растет по мере удаления от поверхности объекта.
Чтобы уменьшить зернистость границ, введите в поле параметра Shadow Rays (Лучи тени) значение 10. Еще раз визуализируйте сцену, но имейте в виду, что на этот раз визуализация займет еще больше времени.
Итак, вы получили представление об основах настройки источников света и теней. Теперь рассмотрим дополнительные элементы управления освещенностью.
Продвинутая 3D графика в пакете Maya
Анимация на основе ключевых кадров
Анимация на основе ключевых кадров
Стандартным методом анимации является анимация на основе ключевых кадров, и именно его вы будете использовать в упражнениях этой главы. Суть метода состоит в создании ключей анимации для крайних положений объекта, позволив компьютеру рассчитывать состояние объекта в промежуточных положениях. Например, при моделировании процесса сгибания руки необходимо создать два ключа анимации — один для полностью вытянутой руки, а второй для руки в согнутом состоянии. Каждый ключ связан с определенным моментом времени. Когда ползунок таймера анимации попадает на определенный кадр, параметры объекта принимают значения, заданные с помощью ключа.
Первым шагом к созданию анимации является указание ее диапазона. Затем можно начать размещение ключей в определенных кадрах, используя окно каналов или клавиатурные комбинации.
Для создания ключей можно использовать метод автоматической установки ключевых кадров. Он начинает действовать после нажатия кнопки Auto keyframe (Автоматическая установка ключевых кадров), расположенной справа от ползунка Диапазона. Идея метода состоит в том, что после нажатия этой кнопки любое изменение параметров объекта приводит к созданию ключа анимации. Соответственно, вам остается только устанавливать ползунок таймера анимации на нужный кадр и затем менять параметры объекта или объектов. Однако необходимо вручную создать первый ключ анимации, чтобы инициировать процесс.
Примечание
ПРИМЕЧАНИЕ
В Maya имеется возможность настроить изменение одного ключевого параметра в зависимости от состояния другого. Подробную информацию об этом вы найдете в главе 14. Например, можно связать движение скачущего шарика с интенсивностью падающего на него света. В итоге шарик будет освещен ярче всего в момент достижения максимальной высоты.
Анимация вдоль пути
Анимация вдоль пути
Первое представление об анимации вдоль пути вы получили в главе 4. Общая идея этого метода состоит в том, что вы создаете NURBS-кривую и соединяете ее с объектом, который начинает двигаться вдоль этой кривой. В главе 4 в качестве такого объекта фигурировала шлюпка. Имеется возможность указать, в каком месте кривой объект должен находиться в определенный момент время. Это позволяет смоделировать изменение направления движения, задержку в одной точке или колебание вокруг нее. Этот метод будет еще раз рассмотрен в главе 11, где вам предстоит заставить камеру двигаться вокруг дома.
Инструменты для работы с анимацией
Инструменты для работы с анимацией
Перед тем как приступить к созданию анимации, необходимо ознакомиться с инструментами, которые вам предстоит использовать. В расположенных ниже разделах вы найдете обзор необходимых элементов интерфейса.
Элементы интерфейса предназначенные
h2>Различные типы анимации. Мы проиллюстрируем результаты различных типов анимации, что впоследствии даст вам возможность выбрать наиболее подходящую анимацию для вашей сцены.
Подготовка к анимации. Вы увидите, что нужно сделать перед началом создания анимации в сцене.
Работа с ключами анимации и анимационными кривыми. Вы научитесь использовать инструмент Graph Editor (Редактор анимационных кривых), который позволяет изменить параметры ключей анимации и вид анимационных кривых.
Продолжение работы над сценой с домом. Используя сцену, полученную в конце предыдущей главы, вы анимируете отдельные элементы дома.
Использование инструмента Playblast. Вы узнаете, как с помощью инструмента Playblast (Проигрыватель) быстро посмотреть на результат редактирования анимации.
Ключевые термины
Ключ (Key). Маркер, определяющий значения анимируемых параметров объекта в определенный момент времени.
Ключевой кадр (Keyframe). Кадр, содержащий ключ анимации.
Анимация на основе ключевых кадров (Keyframe-based animation). Результат использования ключей анимации для определения времени и места наступления определенного события. Обычно эти события представляют собой крайние положения объекта, например полностью вытянутая или полностью согнутая рука. При этом положение объекта в промежутках между крайними состояниями рассчитывает компьютер.
Касательная в месте расположения ключа анимации (Key tangent). Определяет скорость изменения параметров слева и справа от точки ключа анимации. Анимация объектов включает не только задание изменения положения объекта в пространстве, но и изменение скорости его движения.
Анимационная кривая (Animation curve). Визуальное представление состояния аними-рованного параметра между ключами анимации. Редактируется путем настройки положения касательных в окне диалога Graph Editor (Редактор анимационных кривых).
Автоматическая установка ключевых кадров (Auto keyframe). Функция, позволяющая автоматически создавать ключевой кадр при каждом изменении анимируемого параметра, после того как первый ключевой кадр задан вручную.
Анимация вдоль пути (Path animation). Соединение объекта с заданной траекторией движения.
Нелинейная анимация (Nonlinear animation). Усовершенствованный метод анимации, суть которого состоит в комбинации отдельных фрагментов анимационной последовательности. Например, можно скомбинировать анимацию, в которой персонаж идет по дороге, и анимацию, в которой он пьет воду. В итоге вы заставите его пить в процессе ходьбы.
Редактор анимационных кривых (Graph editor). Инструмент редактирования ключей анимации и формы анимационных кривых в Maya.
Частота кадров (Frame rate). Величина, определяющая число кадров, показанных за одну секунду.
Диапазон анимации (Playback range). Информация о начальном и конечном кадрах интервала анимации, который нужно воспроизвести.
Нелинейная анимация
Нелинейная анимация
Усовершенствованный вид анимации создается в Maya с помощью окна диалога Trax Editor (Редактор слоев). В отличие от анимации, построенной на основе ключевых кадров, нелинейная анимация не имеет зависимости от времени. Движение объектов моделируется путем комбинации отдельных слоев анимационной последовательности. Временная шкала позволяет использовать отдельные фрагменты анимации и объединять их различными способами. Кроме того, вы можете ускорять или замедлять воспроизведение участков анимации.
Этот метод также полезен для редактирования отдельных частей анимации, не затрагивая при этом уже полученные результаты. Например, если нужно, чтобы на каком-то участке персонаж бежал, а не шел, можно вырезать этот участок и изменить характер движения ног. При этом остальная часть анимации останется без изменений. Если вас устраивают полученные результаты, можно скомбинировать вырезанный участок с остальной частью анимации.
Окно Graph Editor
Окно Graph Editor
Окно диалога Graph Editor (Редактор анимационных кривых), показанное на Рисунок 10.5, используется для редактирования значений ключей анимации.
Оно содержит анимационные кривые — графики, иллюстрирующие характер и величину изменений ключевых параметров во времени. Анимационная кривая содержит ключи анимации. Помните о возможности изменять масштаб изображения в этом окне диалога и пользоваться прокруткой.
Редактор анимационных кривых можно использовать как в качестве плавающего окна диалога, так и в виде одного из окон проекции. В первом случае достаточно выбрать в меню оперативного доступа команду Window > Animation Editors > Graph Editor (Окно > Редакторы анимации > Редактор анимационных кривых). Если же требуется, чтобы оно фигурировало в виде окна проекции, вписавшись в текущую конфигурацию, выберите команду Panels > Saved Layouts > Persp/Outliner/ Graph (Панели > Варианты компоновки > Persp/Outliner/Graph). В процессе выполнения следующего упражнения попробуйте оба варианта и решите, какой из них вам удобнее использовать.
Определение диапазона анимации
Определение диапазона анимации
Диапазон анимации определяет ее общую длину в кадрах. При его указании необходимо решить, сколько секунд будет длиться ваша анимация. Затем нужно умножить количество секунд на частоту кадров. Анимация, которую вам предстоит создать в этой главе, имеет продолжительность 20 секунд. Частота кадров будет равна 30 кадрам в секунду. Соответственно, диапазон анимации составит 30 кадров/с х 20 с = 600 кадров.
Подготовка к анимации
Подготовка к анимации
Процесс создания анимации начинается с указания базовых настроек ползунка диапазона и ползунка таймера анимации. Чтобы убедиться, что указанные элементы видны, нажмите пробел, чтобы вызвать меню оперативного доступа, а затем нажмите правую кнопку мыши справа от команды Hotbox Controls (Элементы управления), чтобы открыть контекстное меню для элементов интерфейса, связанных с анимацией, как показано на Рисунок 10.1. Используйте это контекстное меню, чтобы сделать видимыми ползунок диапазона и ползунок таймера анимации.
Подведем итоги
Подведем итоги
Анимация позволяет изменить положение и вид объекта во времени. Вы можете использовать динамические объекты (о которых мы расскажем вам в главе 13), анимацию вдоль пути или вручную создать набор ключей, позволив программе рассчитывать промежуточные положения объектов. Существует еще несколькоспособов анимации объектов. В этой главе вы получили представление об основных способах создания, редактирования и обсчета анимации в Maya:
Подготовка сцены к созданию анимации. Для осуществления необходимых настроек использовалось окно диалога Preferences (Параметры).
Ключи и анимация. Знание способов настройки ключей является первым шагом в анимации объектов.
Редактирование ключей и анимационных кривых. В некоторых ситуациях невозможно отредактировать анимацию должным образом, используя только ключи. Изменение формы анимационных кривых и наклона касательных предоставляет более совершенный способ управления анимацией.
Просмотр анимации с помощью функции Playblast. Вряд ли вам понравится в течение нескольких часов настраивать анимацию объектов в сцене, а затем потратить целый день на визуализацию, только чтобы обнаружить, что полученная анимация вас не устраивает. Однако этой проблемы можно избежать, воспользовавшись функцией Playbtast (Воспроизведение).
Редактирование сцены с домом. Упорная работа над сценой с домом в упражнениях предыдущих глав сделала ее достойной визуализации. Дом постепенно становится все более совершенным и к концу книги его будет не стыдно показать зрителям.
Ползунок диапазона и параметры анимации
Ползунок диапазона и параметры анимации
На Рисунок 10.2 показан вид ползунка диапазона. Он используется для задания общей продолжительности анимации. Также с его помощью можно временно ограничить диапазон воспроизведения, указав начальный и конечный кадры интервала. На рисунке показано, что в данный момент рассматривается диапазон с кадра № 60 по кадр № 120. После того как указанный сегмент будет отредактирован, можно переместить ползунок диапазона на другую область или же растянуть его для показа всего диапазона.
Ползунок таймера анимации
Ползунок таймера анимации
Ползунок таймера анимации, показанный на Рисунок 10.4, является существенным инструментов для работы с анимацией в Maya. Его можно использовать для просмотра анимации в действии, для перехода на определённый кадр, а также для размещения ключей анимации.

Рисунок 10.4. Ползунок таймера анимации и элементы управления анимацией
Перемещая с помощью мыши ползунок таймера анимации, можно увидеть движение объектов в сцене. Черная вертикальная черта указывает номер текущего кадра. Если выделенному в данный момент объекту сцены соответствуют ключи анимации, они появятся на ползунке в виде красных вертикальных линий. Справа от него расположена группа кнопок, используемых для воспроизведения анимации и для перехода от одного ключевого кадра к другому.
Ползунок диапазона
Рисунок 10.2. Ползунок диапазона используется для управления продолжительностью анимации и ограничения воспроизведения определенной областью

Альтернативным инструментом управления продолжительностью анимации является окно диалога Preferences (Параметры). Его можно открыть, щелкнув на кнопке Animation Preferences (Параметры анимации), расположенной справа от ползунка диапазона, как показано на Рисунок 10.2, или выбрав в меню оперативного доступа команду Window > Setting/Preferences > Preferences (Окно > Настройки/Параметры > Параметры). Перед тем как вносить какие-либо изменения, выберите команду Restore Default Settings (Восстановить заданные по умолчанию параметры) в меню Edit (Правка) появившегося окна диалога. Впоследствии можно скрыть элементы интерфейса Shelf (Полка) и Tool Box (Панель инструментов) для получения дополнительного рабочего пространства.
Выберите в расположенном слева списке Categories (Категории) вариант Timeline (Временная шкала), как показано на Рисунок 10.3. Теперь можно указать диапазон воспроизведения анимации и ее общую продолжительность. Кроме того, существует возможность изменить время воспроизведения анимации, размер ползунка таймера анимации и прочие параметры.
На вкладке Timeline
Рисунок 10.3. На вкладке Timeline окна диалога Preferences можно указать общую продолжительность анимации и скорость ее воспроизведения в окне проекции
Частота кадров
Одним из основных параметров анимации является частота кадров. Он влияет на продолжительность и плавность воспроизведения. По умолчанию в Maya используется та же частота кадров, что и в обычном кино, равная 24 кадрам в секунду. Это значит, что за одну секунду будут показаны 24 кадра. Таким образом, анимация, занимающая несколько минут, требует визуализации тысяч кадров.
Примечание
ПРИМЕЧАНИЕ
Также для анимации можно использовать стандарты телевизионного сигнала: NTSC и PAL. Первый используется в странах Америки и Японии и составляет 30 кадров в секунду. Стандарт PAL применяется в странах Европы и составляет 25 кадров в секунду. Имейте в виду, что эти стандарты имеют различное разрешение визуализации.
Окно диалога Graph
Рисунок 10.5. Окно диалога Graph Editor дает возможность легко редактировать параметры ключей анимации

Итак, рассмотрим интерфейс окна диалога Graph Editor (Редактор анимационных
кривых):
Строка меню Строка меню вид которой
Строка меню. Строка меню, вид которой показан на Рисунок 10.6, содержит все команды, необходимые для работы с окном диалога Graph Editor (Редактор анимационных кривых). Меню Edit (Правка) напоминает стандартное меню текстового редактора, правда, в данном случае приходится работать с ключами анимации, а не с текстом. Меню Curves (Кривые) позволяет контролировать вид анимационных кривых, заданный путем создания ключей анимации. Например, можно заставить определенные кадры повторяться снова и снова. Для редактирования ключей используйте команды меню Keys (Ключи анимации). Для выбора варианта сглаживания анимационной кривой справа и слева от каждого из ключей анимации предназначены команды меню Tangents (Касательные).
Примечание

В Maya существует еще один редактор анимации Dope Sheet (Монтажный стол). Вместо анимационных кривых в нем в виде цветных прямоугольников показаны ключи анимации, перемещая которые можно корректировать время наступления события. Также с его помощью осуществляется синхронизация движения со звуковым файлом.
Типы анимации
Типы анимации
Существует несколько различных способов анимации объектов сцены. Каждый из них имеет свои преимущества и недостатки, которые мы обсудим ниже. Это поможет вам впоследствии выбрать наиболее подходящий тип анимации.
Анимация дома
Упражнение. Анимация дома
Рассмотрим процесс создания анимации по методу ключевых кадров на примере. В этом упражнении вам предстоит создать ключи для параметров деформации изгиба. Соответствующий модификатор позволяет различным образом искажать форму домика, чтобы создать впечатление наличия в нем привидений. Загрузите файл ch10tut01start.mb. Сцена содержит дом, которому были назначены материалы, источники света, и опорную плоскость, формирующую окружающий пейзаж.
Откройте окно диалога Preferences (Параметры) и выберите в списке Categories (Категории) вариант Settings (Настройки), чтобы открыть вкладку General Application Preferences (Общие параметры приложения). В раскрывающемся списке 7 Time (Время) раздела Working Units (Рабочие единицы измерения) выберите вариант NTSC (30 fps).
В списке Categories (Категории) выберите вариант Timeline (Временная шкала) и введите в поля, расположенные справа от имени параметра Animation Start/End (Начало/Конец анимации), значения 1 и 600 соответственно. Вы увидите, как
после этого изменится вид ползунка диапазона. Проверьте, чтобы в раскрывающемся списке Playback Speed (Скорость воспроизведения) раздела Playback (Воспроизведение) был выбран вариант Real-Time (30 fps) (В реальном времени (30 кадров/с)). Именно с этой частотой будет показана анимация в окне проекции при нажатии кнопки Play (Воспроизведение) в группе кнопок управление анимацией. То есть при необходимости часть кадров будет просто пропущена. Для сохранения сделанных изменений нажмите кнопку Save (Сохранить) в нижней части окна диалога Preferences (Параметры).
Если теперь при нажатии комбинации клавиш Alt+v вы обнаружите, что анимация останавливается и возвращается на начало, не доходя до кадра № 600, измените диапазон ее воспроизведения. Для этого нужно ввести в поле Playback End Time (Время окончания воспроизведения анимации) значение 600.
Выберите в меню оперативного доступа команду Panels > Saved Layouts > Persp/Outliner (Панели > Варианты компоновки > Persp/Outliner). Чтобы убрать из сцены лишние объекты, оставьте видимыми только слои OuterWallsL, ChimneyL, WindowsL, InnerWallL, DoorL, PorchL и RoofL. Нажмите клавишу 5 для перехода в режим тонированной раскраски.
Теперь пришла пора выделить модификатор, для которого нужно создать ключи анимации. В окне Outliner (Структура) щелкните на квадратике со знаком «плюс», расположенном слева от имени группы Old_House, и выделите строчку House_Bend. В разделе Inputs (Входные данные) окна каналов щелкните на имени модификатора bendl, чтобы сделать доступными его параметры.
Убедитесь, что ползунок таймера анимации стоит на отметке кадра № 1. Нажмите кнопку Auto keyframe (Автоматическая установка ключевых кадров). Выделите имя параметра Curvature (Кривизна) в разделе Inputs (Входные данные) окна каналов, щелкните на нем правой кнопкой мыши и выберите в появившемся контекстном меню вариант Key Selected (Установить ключ у выделенного параметра), чтобы создать первый ключевой кадр. Параметры, которым соответствуют ключевые кадры, выделены в окне каналов оранжевым. Убедитесь, что в кадре № 1 появился ключ анимации.
Переместите ползунок таймера анимации на отметку кадра № 150. Это можно сделать, введя в расположенное справа от ползунка поле Current Time (Текущий кадр) значение 150.
В окне каналов введите в поле параметра Curvature (Кривизна) значение 0,6, чтобы создать второй ключ. Затем перейдите к кадру № 350 и сделайте кривизну равной -0,5. В кадре № 400 значение данного параметра должно стать равным нулю. Затем для кадров № 450, 530 и 600 сделайте параметр Curvature (Кривизна) равным -0,2, 0,5 и 0,3 соответственно. Затем снова нажмите кнопку Auto keyframe (Автоматическая установка ключевых кадров), чтобы выйти из режима создания ключевых кадров.
Введите в поле Current Time (Текущий кадр) значение 1 и нажмите комбинацию клавиш Alt+v, чтобы посмотреть, как будет изменяться форма дома. Снова нажмите Alt+v для остановки воспроизведения анимации. Как вы видите, иногда объект начинает двигаться рывками. В следующем разделе мы поговорим о том, как сделать движение более плавным, используя инструмент Graph Editor (Редактор анимационных кривых). Сохраните сцену под именем ch10HouseAnomation.
Использование проигрывателя
Упражнение. Использование проигрывателя
Принцип работы модуля Playbtast (Проигрыватель) состоит в создании моментальных снимков экрана, соответствующих каждому кадру анимации, с последующим показом полученного набора изображений. В результаты вы получаете представление о том, как будет выглядеть анимация после итоговой визуализации. Также это дает возможность определить области анимации, выходящие за границы временной шкалы. Если вы предпочитаете использовать наш вариант сцены, загрузите файл ch10tut02end.mb.
В окне проекции Perspective (Перспектива) разместите дом таким образом, чтобы иметь возможность наблюдать все его деформации. Выберите в меню оперативного доступа команду Window (Окно) и щелкните на квадратике, расположенном справа от команды Playblast (Проигрыватель). Выберите в меню Edit (Правка) появившегося окна диалога команду Reset Settings (Сбросить настройки).
Обратите внимание, что значение параметра Scale (Масштаб) равно 0,5. Нажмите кнопку Playblast (Воспроизведение). Изображение в окне проекции Perspective (Перспектива) тут же уменьшится наполовину и начнется воспроизведение анимации с частотой один кадр в секунду. При этом каждый кадр сохраняется в буфере.
Редактирование ключей в окне Graph Editor
Упражнение. Редактирование ключей в окне Graph Editor
В этом упражнении вам предстоит детально ознакомиться с окном диалога Graph Editor (Редактор анимационных кривых). Вы можете продолжить работу над сценой из предыдущего упражнения или загрузить файл ch10tut01end.mb, чтобы иметь гарантию, что все было сделано правильно.
Если вы загрузили файл, для начала закройте окно диалога Outliner (Структура). Выберите в меню оперативного доступа команду Panels > Saved Layouts > Persp/Outliner/Graph (Панели > Варианты компоновки > Persp/Outliner/Graph) и убедитесь, что ползунок таймера анимации стоит на отметке первого кадра. Скройте слои PorchL и ChimneyL, так как они не пригодятся в данном упражнении, зато способны замедлить воспроизведение анимации.
В окне Outliner (Структура) щелкните на квадратике со знаком «плюс», расположенном слева от имени группы Old_House, чтобы раскрыть дерево иерархии этой группы, и выделите модификатор House_Bend. В окне Graph Editor (Редактор анимационных кривых) автоматически появится соответствующая анимационная кривая, форма которой определяется ключами анимации, созданными в предыдущем упражнении.
Перед тем как приступить к редактированию ключей анимации, измените масштаб кривой, выбрав в меню View (Вид) окна команду Frame All (Показ всех объектов). Тот же самый результат достигается нажатием комбинации клавиш Shift+A.
Каждый ключ представлен небольшой точкой, лежащей на кривой. Нажмите комбинацию клавиш Alt+v, чтобы начать воспроизведение анимации, и понаблюдайте за тем, что происходит в окне Graph Editor (Редактор анимационных кривых). Вы увидите, что вдоль оси X перемещается вертикальная черта, отмечающая положение текущего показываемого кадра. Внимательно посмотрите, как это соотносится с движением дома.
Чтобы сделать анимацию более плавной, изменим форму анимационной кривой. Выделив ее щелчком, вы увидите появление касательных в местах расположения ключей анимации, как показано на Рисунок 10.8.
Примечание
Примечание

Если вы ожидали увидеть более радикальные изменения формы анимационной кривой в результате редактирования положения касательной, имейте в виду, что, несмотря на кажущуюся малость изменений, после запуска воспроизведения анимации эффект будет заметен очень хорошо. Существует несколько вариантов формы касательных. Самостоятельно поэкспериментируйте с каждым из них, чтобы посмотреть, как они действуют. Например, выбрав вариант Break Tangents (Разрыв касательных), вы получите возможность перемещать части касательной независимо друг от друга, чтобы создать разрыв анимационной кривой, что соответствует резкому скачку объекта.
Выравнивание касательной приводит к тому, что анимационная кривая в каждой точке слева и справа от ключа имеет значение, не превышающее значение в ключевом кадре. Если внимательно рассмотреть верхнюю часть, можно заметить, что справа от ключа значение анимируемого параметра превосходит значение в точке ключа. Однако идея анимации в данном случае состоит в том, что ключи представляют предельные значения параметра. По очереди выделяйте каждый из них и нажимайте кнопку Flat (Плоская форма). В результате движение дома должно стать более равномерным.
Чтобы еще больше сгладить анимацию, воспользуйтесь инструментом Move (Перемещение). Нажмите клавишу w и средней кнопкой мыши переместите ключи таким образом, чтобы они оказались равномерно распределенными вдоль оси X, например, как показано на Рисунок 10.9. В результате переходы из одного состояния в другое станут менее резкими. Сохраните сцену.
Совет
Совет
Создать дополнительные ключи можно, нажав кнопку Insert Keys (Вставить ключи) на панели инструмента окна Graph Editor (Редактор анимационных кривых) и щелкая средней кнопкой мыши в нужных местах анимационной кривой.

Рисунок 10.9. Результат перемещения ключей анимации
с помощью видеокарты вашего компьютера.
ВНИМАНИЕ
Обсчет изображений происходит с помощью видеокарты вашего компьютера. Если закрыть Maya другим окном в процессе подготовки к воспроизведению с помощью функции Playblast (Проигрыватель), ресурс видеокарты будет занят посторонним приложением и запись кадров в буфер производиться не будет.
После окончания процесса обсчета кадров появится окно проигрывателя, используемого вашей операционной системой по умолчанию, в котором вы увидите, как выглядит анимация. Если вас не устраивает полученный результат, вернитесь в окно Graph Editor (Редактор анимационных кривых) и внесите необходимые изменения.
Сохраните сцену.
Так как обсчет анимации занимает
ВНИМАНИЕ
Так как обсчет анимации занимает значительное количество времени, желательно не загружать сцену лишними деталями. Это можно осуществить, скрыв объекты, редактированием которых вы не занимаетесь в данный момент. Кроме того, существует возможность заменить объекты со сложной структурой более простыми, аппроксимирующими объектами. Другими словами, делайте все, что может ускорить реакцию программы на ваши действия. В этом случае вам, скорее всего, удастся оценить результат своей работы путем воспроизведения анимации в окне проекции, что позволяет сэкономить значительное количество времени.
Оживший домик выглядит забавно, но стоит сделать видимыми крыльцо и трубу, как впечатление тут же портится. Эти элементы остаются неподвижными, и движение дома происходит сквозь них. Используйте полученные в этой главе знания и навыки и попытайтесь самостоятельно анимировать трубу и крыльцо таким образом, чтобы они повторяли движения дома. Затем можно назначить им дополнительный изгиб или другую анимацию, чтобы сделать их более живыми. Если вы не уверены, что все делаете правильно, загрузите файл ch01tut03end.mb.
Воспроизведение анимации
Воспроизведение анимации
Воспроизведение анимации в окне проекции Perspective (Перспектива) дает примерное представление о том, как она будет выглядеть в итоге. Но даже самый мощный компьютер не сможет воспроизвести анимацию достаточно гладко при заданном значении частоты кадров. В некоторых случаях это можно компенсировать, скрыв лишние детали объекта или понизив качество картинки на экране. Однако иногда и этого бывает недостаточно и приходится создавать небольшой фильм, покадрово визуализируя анимацию. Но этот процесс может занять несколько часов. Поэтому для просмотра анимации в реальном времени в Maya используется особый модуль Playblast (Проигрыватель).
Продвинутая 3D графика в пакете Maya
Анимация камеры
Анимация камеры
При анимации камеры необходимо соблюдать несколько правил, к примеру, избегать резких движений, таких как быстрое панорамирование, увеличение масштаба и вращение камеры. Кроме того, желательно создать впечатление, что камера обладает массой. Виртуальные камеры начинают двигаться и останавливаются внезапно. Такое поведение не имеет ничего общего с реальным положением дел. Избежать этого можно, изменив положение касательных к первому и последнему ключам анимации таким образом, чтобы движение начиналось и заканчивалось постепенно. То же самое нужно сделать для ключей, описывающих поведение остальных параметров камеры, только в этом случае получится сглаженное движение. Вам предстоит проделать это в первом упражнении данной главы.
Примечание
ПРИМЕЧАНИЕ
Можно посмотреть на сцену сточки расположения любого объекта. Для этого его нужно выделить и выбрать в меню Panels (Панели) окна проекции команду Look Through Selected (Вид из точки расположения выделенного объекта). Обычно эта команда используется, когда необходимо проверить место расположения мишени источников света типа Spot (Прожектор) или Directional (Направленный). Наблюдение происходит из опорной точки объекта в отрицательном направлении оси Z.
Камеры и проекции Вы познакомитесь
h2>Настройка камер. Вы получите информацию о том, как изменение параметров камеры влияет на вид сквозь ее объектив.
Анимация камер. Вам предстоит выполнить упражнение, в процессе которого камера начнет двигаться по заданной траектории.
Еще немного о функции Playblast. Вы еще раз убедитесь в том, что с помощью функции Playblast (Проигрыватель) можно сэкономить время при работе над сценой.
Параметры окна диалога Render Globals. Используя окно диалога Render Globals (Общие параметры визуализации), вам предстоит задать вид визуализированного изображения. Вы получите информацию о наиболее часто используемых наборах параметров и о том, как они влияют на вид итогового изображения.
Добавление камеры в сцену с домом монстра. Напоследок вам предстоит добавить в сцену с домом камеру и продемонстрировать вид дома с различных ракурсов.
Ключевые термины
Сглаживание (Antialiasing). Устранение ступенчатого эффекта или разрывов на изображениях линий, расположенных не параллельно краям экрана.
Перспективная проекция (Perspective view). Результат переноса на плоскость точек трехмерного объекта, который выполняется пучком лучей, исходящих из одной точки, соответствующей положению глаза наблюдателя.
Ортографическая проекция (Orthographic view). Двумерный, плоский вид сцены, обычно наблюдаемый спереди, сбоку или сверху. Получается путем выравнивания плоскости проекции параллельно одной из координатных плоскостей трехмерного пространства.
Фокусное расстояние (Focal length). Расстояние от линзы объектива до плоскости пленки. Прямо пропорционально размеру объекта в кадре.
Плоскости отсечки (Clip Planes). Параметры усечения изображения сцены в окне камеры плоскостями, установленными на заданном расстоянии от камеры перпендикулярно линии взгляда.
Глубина резкости (Depth of field). Область на некотором расстоянии от камеры, в пределах которой объекты находятся в фокусе.
Переворот (Tumble). Поворот камеры вокруг ее центра.
Сопровождение (Truck). Перемещение камеры вместе с мишенью вверх, вниз, влево или вправо без смены ориентации линии визирования.
Наезд (Dolly). Движение камеры без изменения ширины поля зрения объектива и соответственно без изменения степени перспективных искажений.
Масштабирование (Zoom). Способ увеличения или уменьшения объекта, сопровождаемый перспективными искажениями.
Крен (Roll). Поворот камеры вокруг оси пирамиды видимости.
Проигрыватель (Playblast). Специальный модуль, предназначенный для просмотра эскиза анимации.
Пакетная визуализация (Batch render). Фоновый процесс, позволяющий визуализировать набор кадров, не прекращая работы с окном программы Maya. Полученные кадры сохраняются в папке Images.
Камеры
Камеры
В Maya все проекции связаны со своими камерами. По умолчанию после загрузки программы сцена содержит четыре камеры, которые показывают вид объекта сверху, сбоку, спереди, а также в перспективной проекции. Первые три проекции являются ортографическими. Значки соответствующих камер видимы, что дает возможность переместить их или повернуть. Значок камеры, создающей перспективную проекцию, по умолчанию невидим. Эти камеры являются вспомогательными элементами, без которых невозможен процесс моделирования. После того как определена точка, с которой будет производиться визуализация сцены, необходимо создать в этой точке камеру. Если требуется получить набор неподвижных изображений, можно создать несколько камер, фиксирующих сцену с разных точек. Однако проще всего перемещать одну камеру, в различных кадрах визуализируя вид через ее объектив. Существует возможность анимировать несколько камер одновременно, чтобы получить несколько различных клипов одной и той же сцены.
Положение камеры четко определяет, что именно вы будете наблюдать через ее объектив и какая часть сцены попадет в кадр. Также это зависит от фокусного расстояния, ориентации камеры и ее поля зрения. При этом увеличение фокусного расстояния приводит к сужению поля зрения. Если же вы увеличиваете поле зрения, для сохранения размера объекта без изменений необходимо переместить камеру ближе к объекту.
Кривая которая будет использоваться в качестве пути анимации
Рисунок 11.7. Кривая, которая будет использоваться в качестве пути анимации
Созданная кривая в окне проекции Тор (Вид сверху) выглядит совершенно прямой. Чтобы сделать движение камеры более интересным, сделаем траекторию зигзагообразной. Нажмите клавишу Пробел для перехода к стандартной четырехоконной конфигурации и в окне проекции Тор (Вид сверху) переместите часть управляющих точек. Для этого нужно перейти в режим выделения подобъектов, нажав клавишу F8. Используйте Рисунок 11.8 в качестве опорного изображения. В процессе перемещения управляющих точек постарайтесь не производить внезапных изменений направления кривой. Желательно, чтобы она оставалась гладкой.
Общие параметры визуализации
Общие параметры визуализации
Окно диалога Render Globals (Общие параметры визуализации), показанное на Рисунок 11.5, на первый взгляд может показаться перенасыщенным параметрами, но вам нужно помнить только несколько ключевых разделов.
Если требуется запускать визуализацию автоматически, то необходимо убедиться, что в разделе Image File Output (Выходной файл) все настроено правильно. В общем случае желательно, чтобы новая визуализация не записывалась поверх предыдущей, поэтому необходимо сохранять их в разных файлах. Если этого не сделать, запись будет произведена в файл, расположенный в папке images вашего проекта. Поля, находящиеся под полем Frame/Animation Ext (Расширение имени файла/Нумерация кадров анимации), становятся доступными при выборе для итогового файла формата фильма или же нумерованных расширений файлов. Вы получите возможность указывать начальный и конечный кадры анимации. По умолчанию число таких кадров равно 10, что соответствует очень короткому фильму. В предыдущем упражнении необходимо было бы изменить значение параметра End Frame (Конечный кадр) на 300, а значение параметра Start Frame (Начальный кадр) — на 0. Раскрывающийся список Image Format (Формат изображения) позволяет выбрать для результата визуализации подходящий формат. Обзор возможных форматов был дан в главе 1.
В разделе Resolution (Разрешение) устанавливается размер выходного изображения. Можно использовать раскрывающийся список Presets (Предустановленные значения) для выбора одного из заранее заданных разрешений. Для тестовой визуализации значение этого параметра обычно равно 320x240. Если итоговое изображение предназначено для печати, то желательно сделать его ширину равной 2000 пикселам или больше. Максимально возможный размер изображения определяется объемом оперативной памяти вашего компьютера. Величину параметра Pixel Aspect Ratio (Пропорцию пиксела), задающего отношение высоты пиксела к его ширине, оставьте равной 1.
Параметры раздела Anti-aliasing Quality (Качество сглаживания) оказывают непосредственное влияние на скорость визуализации и качество изображения. Без сглаживания края объектов приобретают ступенчатую структуру, особенно заметную при высокой контрастности цветов пересекающихся друг с другом элементов изображения. Для тестовой визуализации можно оставить значение этого параметра небольшим, так как его увеличение приводит к замедлению данного процесса. Соответственно, выберите в раскрывающемся списке Presets (Предустановленные значения) вариант Preview Quality (Эскизное качество). Для итоговой визуализации используйте вариант Production Quality (Высокое качество).
Окно диалога Render Globals служит
Рисунок 11.5. Окно диалога Render Globals служит для задания параметров визуализации

В разделе Raytracing (Трассирование) настраиваются параметры эффектов отражения, преломления и теней, которые должны появиться в итоговой картинке. По умолчанию трассирование отключено, так как оно сильно замедляет процесс визуализации. Числа в полях Reflections (Отражение), Refractions (Преломления) и Shadows (Тени) определяют глубину трассирования, то есть число возможных отражений луча от поверхностей объектов, после которого он еще способен формировать указанные эффекты. Когда луч света сталкивается с поверхностью отражающего или преломляющего объекта, он рикошетирует обратно. Если числоотскоков луча превосходит значение одного из вышеуказанных параметров, соответствующий эффект не возникает. Это позволяет сэкономить массу времени при визуализации таких сцен, как, например, зеркальный зал, потому что в противном случае луч отражался бы от поверхностей бесконечно.
Параметры камеры
Параметры камеры
Если камера выделена, для нее можно открыть окно диалога Attribute Editor (Peдактор атрибутов) и, раскрыв все разделы, как показано на Рисунок 11.1, рассмотреть параметры камеры.
Перечислим основные параметры, необходимые для редактирования камеры. Большинство из них расположено в разделе Camera Attributes (Атрибуты камеры):
Controls (Тип камеры). С помощью этого раскрывающегося списка можно быстро выбрать нужный тип камеры.
Angle of View (Угол зрения)/Роса1 Length (Фокусное расстояние). Элементы управления, отвечающие за искажения перспективы. Увеличение первого параметра приводит к уменьшению второго.
Camera Scale (Масштаб камеры). Можно изменить размер камеры относительно сцены, что отразится на состоянии объектов после визуализации. Данный параметр является своего рода множителем к параметру Angle of View (Угол зрения). К примеру, уменьшение значения масштаба камеры до 0,5 паполовину уменьшает просматриваемую зону, зато в два раза увеличивает размер объектов.
Clip Planes (Плоскости отсечки). В сцене появляются только объекты, попавшие между двумя плоскостями, положение которых задается вручную. Если объекты, расположенные на значительном расстоянии, не видны, увеличьте значение параметра Far Clip Plane (Дальняя плоскость отсечки). Если же расположенные вблизи объекты появляются в виде сечения или не появляются вообще, следует уменьшить значение параметра Near Clip Plane (Ближняя плоскость отсечки).
Depth of Field (Глубина резкости). Параметр определяет расстояние, на котором начинается эффект размывания. Это может замедлить процесс визуализации, зато вы получите близкий к реальности результат, потому что объекты, расположенные перед точкой фокуса и за ней, окажутся размытыми.
Подготовка к визуализации Перед
Подготовка к визуализации
Перед тем как запустить процесс визуализации, необходимо выполнить следующие действия:
Сделать видимыми скрытые объекты, которые требуется включить в итоговое изображение.
Сделать видимыми слои, которые требуется включить в итоговое изображение.
В окне диалога Render Globals (Общие параметры визуализации) проверить заданные имя файла, диапазон файлов и формат изображения. Убедиться, что параметр Frame Padding (Количество цифр в номере кадра) совпадает с диапазоном кадров. К примеру, если число кадров, которые необходимо визуализировать, больше 100, но меньше 999, этот параметр должен быть равен 3.
В окне диалога Render Globals (Общие параметры визуализации) проверить, какая именно проекция будет визуализироваться. При желании ее можно изменить в раскрывающемся списке Camera (Камера).
Задать разрешение изображения и качество сглаживания.
Если вы не собираетесь комбинировать между собой несколько кадров, убедиться, что флажки Alpha Channel (Альфа-канал) и Depth Channel (Канал глубины) сняты.
Проверить расположенный в верхней части окна маршрут доступа к папке, в которой будет сохранен файл. Убедиться, что на диске достаточно места для большой картинки или длинного фильма. Если нужно сохранить файл в другой папке, следует выбрать команду Change Project Image Directory (Изменить положение папки images проекта) меню Edit (Правка) окна диалога Render Globals (Общие параметры визуализации). Появится окно диалога Edit Project (Редактирование проекта), в котором можно будет изменить маршрут доступа.
Теперь можно закрыть окно диалога Render Globals (Общие параметры визуализации) и выбрать в меню оперативного доступа команду Render > Batch Render (Визуализация > Пакетная визуализация), чтобы начать процесс обсчета кадров. При этом можно продолжить работу с программой, но в большинстве случаев визуализация требует настолько большого количества ресурсов, что выполнение всех прочих операций крайне замедляется.
Упражнение. Создаем камеру в сцене с домом
Теперь пришла пора применить знания, полученные в предыдущих разделах, и создать камеру для сцены с домом монстра. Вы можете продолжить работу над сценой, полученной в главе 10, или загрузить файл ch11tut02start.mb.
Подготовка к визуализации
Подготовка к визуализации
Теперь все готово для указания параметров визуализации в окне диалога Render Globals (Общие параметры визуализации). Правда, работа над сценой на этом не окончится. Вам еще предстоит добавить некоторые детали при изучении эффектов рисования в главе 12 и рассмотрении свойств систем частиц в главе 13. Не пожалейте времени и настройте пакетную визуализацию, как описано в приведенном ниже упражнении. Например, посвятите этому один из вечеров, оставив компьютер работать на ночь, и к утру вы получите готовый фильм.
Упражнение. Получение фильма методом пакетной визуализации
Продолжите выполнение предыдущего упражнения или загрузите файл ch11tut02end. mb.
Сделайте видимыми все слои и откройте окно диалога Render Globals (Общие параметры визуализации), выбрав в меню оперативного доступа команду Window > Rendering Editors > Render Globals (Окно > Редакторы визуализации > Общие параметры визуализации).
В поле File Name Prefix (Приставка имени файла) введите testfly. В раскрывающемся списке Image Format (Формат изображения) должен быть выбран формат AVI. В поля Start Frame (Начальный кадр) и End Frame (Конечный кадр) введите значения 0 и 600 соответственно. В раскрывающемся списке Camera (Камера) выберите вариант Cameral.
Раскройте раздел Resolution (Разрешение) и выберите в раскрывающемся списке Presets (Предустановленные значения) вариант 320x240. Выбор большего разрешения может привести к тому, что визуализация будет происходить слишком медленно.
В раскрывающемся списке Presets (Предустановленные значения) раздела Antialiasing Quality (Качество сглаживания) выберите вариант Production Quality (Высокое качество), как показано на Рисунок 11.9.
В разделе Raytracing Quality (Качество трассирования) установите флажок Raytracing (Трассирование). Закройте окно диалога Render Globals (Общие параметры визуализации).
Выберите в меню оперативного доступа команду Render > Batch Render (Визуализация > Пакетная визуализация). Управлять ходом визуализации можно при помощи командной строки или редактора сценариев. Последний вариант выбирается, если требуются дополнительные детали. Чтобы открыть редактор сценариев после запуска пакетной визуализации, нажмите кнопку Script Editor (Редактор сценариев), расположенную справа от командной строки. Полная визуализация всех шестисот кадров займет несколько часов. Готовый фильм находится в папке images каталога с вашим проектом. Для просмотра результатов визуализации дважды щелкните на имени этого файла, чтобы открыть проигрыватель. Остановить пакетную визуализацию можно с помощью команды меню оперативного доступа Render > Cancel Batch Render (Визуализация > Остановить пакетную визуализацию).
Примечание
ПРИМЕЧАНИЕ
Некоторые предпочитают визуализировать вместо фильма последовательность статичных кадров. В этом случае прерывание процесса визуализации не приводит к потере уже полученных данных и нет необходимости начинать все сначала. Однако посмотреть на полученный результат можно будет только с помощью служебной программы FCheck (Контроль файлов), а на диске у вас окажется огромный набор файлов. Кроме того, чтобы получить возможность посмотреть анимацию на другом компьютере, необходимо будет сначала преобразовать ее в один из форматов фильма.
Подведем итоги
Подведем итоги
Выполнение упражнений этой главы помогло вам получить представление о параметрах камер и о том, какие именно настройки необходимо произвести перед запуском процесса анимации. Вы изучили следующие темы:
Различные типы камер и их параметры. Вы познакомились с камерами различных типов и узнали об их основных параметрах.
Анимация камер. Даже если ни один объект в сцене не двигается, можно создать впечатление движения, анимировав камеру.
Редактирование движения камеры. Мы продемонстрировали процесс редактирования ключей анимации в окне диалога Graph Editor (Редактор анимационных кривых), благодаря которому создается впечатление наличия у камеры массы.
Визуализация траектории движения камеры. Вам было показано, как сделать видимой траекторию движения камеры над поверхностью, чтобы получить возможность отрегулировать ее высоту.
Тестовая визуализация анимации. Воспроизведение полученных результатов в окне проекции Camera (Камера) помогает лучше оценить, в каких еще изменениях нуждается анимация.
Параметры окна диалога Render Globals. Вы узнали, какие настройки необходимо сделать, чтобы запустить процесс пакетной визуализации.
В следующих главах вы получите возможность добавить экзотические эффекты в сцену с домом монстра. В главе 12, посвященной обсуждению эффектов рисования, вам предстоит создать растительность и густой туман, а в главе 13 — смоделировать дым, идущий из трубы. Только после этого анимация будет готова окончательно!
Просмотр анимации с помощью проигрывателя
Просмотр анимации с помощью проигрывателя
При работе с простыми сценами даже медленный SD-ускоритель позволяет отслеживать редактирование анимации непосредственно в окне проекции в режиме тонированной раскраски. Но если в сцене находится слишком много объектов и, кроме того, включено аппаратное размещение текстур, то скорость реагирования сильно снижается. Обычно это не составляет проблемы. В конце концов, можно подождать, пока процесс завершится, или переключиться в режим каркасного отображения. Но для проверки скорости анимации нужно каким-то образом посмотреть на ее воспроизведение в реальном времени. В Maya для этой цели служит модуль Playblast (Проигрыватель). Для его вызова используйте команду меню оперативного доступа Window > Playblast (Окно > Проигрыватель). Этот инструмент использует видеокарту для записи в буфер всех кадров анимации. Затем можно посмотреть на полученный результат и решить, устраивает ли он вас.
Результат редактирования формы
Рисунок 11.8. Результат редактирования формы CV-кривой в окне проекции Тор 1.
Сохраните сцену под именем ch11HouseCamera.mb.
Редактирование пути анимации
На данный момент траектория камеры не отслеживает изменений рельефа поверхности, так как это невозможно сделать в окне проекции Side (Вид сбоку), в котором опорная плоскость видна в режиме каркасного отображения. Продолжим редактирование сцены.
Можно попытаться переместить все управляющие точки таким образом, чтобы они располагались на одной и той же высоте над уровнем опорной поверхности, но отслеживать их высоту в процессе работы довольно тяжело. Поэтому спроектируем кривую на поверхность. Нажмите клавишу F8 для выхода из режима редактирования подобъектов. Перейдите в окно проекции Тор (Вид сверху). В окне диалога Outliner (Структура) выделите строчку curvel, затем, нажав клавишу Ctrl, выделите также строчку Ground. В контекстом меню, вызываемом спомощью клавиатурной комбинации Alt+z, щелкните на квадратике, расположенном справа от команды Project Curve on Surface (Спроектировать кривую на поверхность). Выберите команду Reset Settings (Сбросить настройки) в меню Edit (Правка) появившегося окна диалога и нажмите кнопку Project (Спроектировать).
Новая кривая является частью поверхности и везде следует ее топологии в процессе перемещения. Убедитесь, что кривая, полученная проектированием, до сих пор выделена и в контекстном меню, вызываемом с помощью клавиатурной комбинации Alt+c, щелкните на квадратике, расположенном справа от команды Duplicate Curves (Дублирование кривых). Выберите команду Reset Settings (Сбросить настройки) в меню Edit (Правка) появившегося окна диалога и нажмите кнопку Duplicate (Копировать). Появится копия кривой, которая не будет являться частью опорной поверхности. Скройте слой GroundL В результате в сцене останутся видимыми только две кривые. Используйте нижнюю кривую в качестве ориентира отсчета высоты для верхней.
Перейдите в окно проекции Front (Вид спереди) и выделите исходную кривую-путь. Нажмите клавишу F8 для перехода в режим редактирования подобъектов и измените положение управляющих точек, оптимизировав тем самым высоту траектории для камеры.
Присвойте готовой кривой имя Camera_Path. Кроме того, можно удалить опорную кривую, так как она вам больше не понадобится.
Параметры камеры
Рисунок 11.1. Параметры камеры в окне диалога Attribute Editor
Background Color (Цвет фона). Заполняющий цвет для фона изображений, визуализируемых выделенной камерой. Существует возможность назначить этому параметру карту текстуры, которая будет использоваться в качестве фонового рисунка.
Orthographic Views (Ортографические проекции). Переключает камеру на ортографическую проекцию (такую как вид спереди, сбоку или сверху), у которой отсутствует перспектива. Можно создать обычную камеру, повернуть ее в нужное положение и затем переключиться в ортографическую проекцию, чтобы получить плоский вид. Это бывает необходимо, например, при размещении текстур на поверхности объекта.
Примечание
ПРИМЕЧАНИЕ
Параметр Film Offset (Смещение кадра) часто используется при моделировании архитектурных ансамблей в случаях, когда необходимо избежать перспективных искажений. Если искажения все-таки появились, для начала поднимите или опустите камеру таким образом, чтобы она располагалась горизонтально. Это приведет к исчезновению вертикальных искажений. Затем используйте поля, расположенные справа от имени параметра Film Offset (Смещение кадра), чтобы указать, какую часть изображения вы хотите визуализировать. Параметры Film Offset X (Смещение кадра по оси X) и Film Offset Y (Смещение кадра по оси Y) задают смещение «взгляда» камеры относительно ее мишени.
Исключение из выделения всех объектов сцены
Рисунок 11.2. Исключение из выделения всех объектов сцены
Выделите камеру и ее мишень. Убедитесь, что ползунок таймера анимации стоит на отметке нулевого кадра, и создайте ключ анимации для преобразования Translate (Перемещение). Для этого нужно нажать комбинацию клавиш Shift+W. Щелкните в произвольном месте окна проекции Perspective (Перспектива), чтобы снять выделение с камеры и мишени.
Примечание
ПРИМЕЧАНИЕ
Обычно для создания ключей используется клавиша s, но вы можете воспользоваться комбинациями клавиш Shift+W, Shift+E и Shift+R, чтобы получить ключи анимации только для преобразований Move (Перемещение), Rotate (Поворот) и Scale (Масштабирование). По умолчанию нажатие клавиши s приводит к появлению набора ключей для всех параметров выделенного объекта, что не всегда необходимо. Лишние ключи могут стать причиной массы проблем в будущем, если вдруг вы захотите анимировать параметр, которому они соответствуют.
Поместите ползунок таймера анимации на отметку кадра № 60 и нажмите клавишу w, чтобы активизировать инструмент Move (Перемещение). В окне проекции Тор (Вид сверху) выделите камеру и переместите ее вниз и влево. Это можно сделать, введя в поля Translate X (Смещение по оси X) и Translate Z (Смещение по оси Z) окна каналов значения 138 и 55.
Сделаем так, чтобы клавиша s использовалась исключительно для создания ключей, управляющих преобразованием перемещения. Выберите в меню оперативного доступа команду Animate (Анимация) и щелкните на квадратике, расположенном справа от команды Set Key (Создать ключ). Убедитесь, что переключатель Set Keys on (Создавать ключ) стоит в положении Current Manipulator Handle (Текущие управляющие вектора), и нажмите кнопку Set Key (Создать ключ). Теперь нажатие клавиши s будет приводить к появлению ключей для преобразования перемещения. Создайте ключ для текущего положения камеры. Затем выделите мишень камеры, поместите ее над конусом и нажмите клавишу s.
Поместите ползунок таймера анимации на отметку кадра № 120 и выделите камеру и мишень. В окне проекции Тор (Вид сверху) переместите их таким образом, чтобы мишень оказалась над центром тора. Нажмите клавишу s. Затем выделите только камеру и переместите ее поближе к тору. В окне проекции Front (Вид спереди) слегка опустите камеру. Ее примерная координата по оси Y должна равняться 26. Снова нажмите клавишу s, чтобы создать новый ключ для камеры вместо предыдущего.
ВНИМАНИЕ
Создав новый ключ для какого-либо параметра в кадре, в котором уже находится ключ для этого параметра, вы замените первый ключ вторым.
Переместите ползунок таймера анимации на отметку кадра № 180. В окне проекции Тор (Вид сверху) переместите камеру вниз таким образом, чтобы ее координаты X и Z стали равны 25 и 90 соответственно. В окне проекции Cameral переместите камеру ближе или дальше от мишени, на ваш вкус. Создайте ключ анимации для камеры. Затем выделите мишень и создайте для нее ключ анимации.
Переместите ползунок таймера анимации на отметку кадра № 210 и создайте ключ для мишени — именно она должна быть выделена у вас в данный момент. Выделите камеру и переместите ее на несколько градусов левее. Это можно сделать, например, введя в поле Translate X (Смещение по оси X) окна каналов значение 0. Создайте ключ анимации.
Переместите ползунок таймера анимации на отметку кадра № 300. Выделите камеру и мишень и в окне проекции Тор (Вид сверху) поместите мишень в центр высокого параллелепипеда. Создайте ключ анимации. Теперь выделите одну камеру и введите в поля Translate X (Смещение по оси X) и Translate Z (Смещение по оси Z) окна каналов значения -65 и 16. Теперь камера расположена слева от высокого параллелепипеда. Создайте ключ анимации.
Щелкните правой кнопкой мыши в любой точке окна проекции Cameral и нажмите комбинацию клавиш Alt+v, чтобы посмотреть на результат анимации камеры. Обратите внимание, что ее движение является достаточно плавным, но начинается и заканчивается внезапно.
Убедитесь, что камера до сих пор выделена, выберите в меню оперативного доступа команду Animate (Анимация) и щелкните на квадратике, расположенном справа от команды Create Motion Trail (Создать траекторию движения). Появится окно диалога Motion Trail Options (Параметры траектории движения), показанное на Рисунок 11.3. Установите переключатель Draw Style (Стиль рисунка) в положение Line (Линия), снимите флажок Show Frame Number (Показывать номер кадра) и нажмите кнопку Create Motion Trail (Создать траекторию движения). В окнах проекции появится траектория движения камеры. Проделайте ту же самую операцию для мишени. Полученные траектории будут менять свою форму при редактировании ключей анимации. Убедитесь, что кнопка Auto keyframe (Автоматическая установка ключевых кадров) нажата, и попытайтесь переместить камеру. Вы увидите, как изменится при этом ее траектория. Нажмите клавишу z, чтобы вернуть траекторию в исходное состояние.

Рисунок 11.3. Окно диалога Motion Trail Options
Убедитесь, что камера выделена, и откройте окно диалога Graph Editor (Редактор анимационных кривых), используя команду меню оперативного доступа Window > Animation Editors > Graph Editor (Окно > Редакторы анимации > Редактор анимационных кривых). Выделите на панели Outliner (Структура) три строчки с именами преобразований перемещения по всем осям координат. В окне просмотра останутся только эти три анимационные кривые. Нажмите клавишу f, чтобы кривые целиком разместились в границах окна.
Выделите рамкой первые точки красной, зеленой и синей кривых. Нажмите клавишу Shift и выделите рамкой последние точки каждой из этих кривых. Щелкните правой кнопкой мыши на любой из выделенных точек и выберите в появившемся контекстном меню команду Tangents > Flat (Касательные > Плоская форма), как показано на Рисунок 11.4. Касательные к анимационным кривым в начальных и конечных точках станут параллельными оси X.
В нижней части панели Outliner (Структура) найдите раздел Center of Interset и выделите три расположенные ниже строки, соответствующие преобразованию перемещения по всем осям. Повторите операцию, описанную в шаге 11 для сглаживания касательных в начальных и конечных точках анимационных кривых.

Рисунок 11.4. Процесс редактирования формы анимационных кривых в окне диалога Graph Editor
Закройте окно диалога Graph Editor (Редактор анимационных кривых) и щелкните правой кнопкой мыши в любой точке окна Cameral. Запустите воспроизведение анимации. Теперь камера будет начинать и заканчивать движение постепенно. Вы можете сравнить свою сцену с тем, что получилось у нас, загрузив файл ch11tut01end.mb.
Несколько небольших
Рисунок 11.9. Несколько небольших изменений в окне диалога Render Globals, и все готово к визуализации фильма

Самостоятельно отредактируйте движение камеры таким образом, чтобы ее движение начиналось и заканчивалось постепенно. Попытайтесь также придать сцене другое настроение, меняя в окне диалога Attribute Editor (Редактор атрибутов) значение параметра Angle of View (Угол зрения) и используя различные кривые в качестве траектории камеры. Если нужно создать впечатление огромного опасного мира, поместите траекторию на небольшом расстоянии от опорной поверхности и выберите широкий угол зрения. Сделав крупный план и высоко расположенную траекторию, вы получите впечатление, что съемка производится с вертолета. Попробуйте анимировать мишень независимо от камеры, а также сделать камеру слегка покачивающейся. Установите связь между камерой и объектом и визуализируйте сцену.
Служебная программа FCheck используется
Рисунок 11.6. Служебная программа FCheck используется для просмотра и редактирования итоговых изображений

С помощью этого инструмента можно просматривать большинство изображений и фильмов, а также осуществлять их преобразование к другим форматам. Он запускается с помощью команды Programs > Maya > FCheck (Программы > Maya > FCheck) меню, появляющегося при нажатии кнопки Start (Пуск) вашей операционной системы.
Создание камер Как и в случае
Создание камер
Как и в случае с источниками света, изменить тип камеры можно в окне диалога Attribute Editor (Редактор атрибутов).
Camera (Камера). В окне проекции показывается только значок камеры. В общем случае, из-за того, что камера может свободно поворачиваться вокруг своей оси, она используется только в фиксированном положении или же в связи с другим объектом (к примеру, в главе 4 вы связывали камеру со шлюпкой).
Camera and Aim (Камера с мишенью). Этот тип камеры имеет мишень (то есть точку, на которую нацелена линия взгляда камеры), снабженную управляющим вектором, который позволяет менять ее положение в пространстве. Кроме того, эта камера постоянно остается на одном уровне по отношению к горизонту, поэтому она используется чаще всего. Конечно, существует возможность накренить камеру этого типа, но по умолчанию ее уровень не изменяется.
Camera, Aim and Up (Камера с мишенью и вертикалью). Камера этого типа имеет два управляющих вектора — один для мишени, второй для регулировки наклона камеры. Такие камеры используются при необходимости создания эффекта Roll (Крен). Имейте в виду, что при перемещении камеры необходимо выделять также и управляющий вектор, отвечающий за ее положение. Если этого не сделать, перемещение камеры приведет к появлению крена.
Примечание
При запуске Maya окно проекции Perspective (Перспектива) представляет собой вид в окне камеры persp. Эта камера используется для фокусировки на определенных областях сцены. В сцену можно ввести дополнительные камеры и визуализировать именно вид, наблюдаемый через объектив любой из них. Обычно для этой цели очень нежелательно использовать камеру, имеющуюся в сцене по умолчанию, потому что ее очень легко ненамеренно переместить.
Создание камеры и связывание ее с кривой
Создание камеры и связывание ее с кривой
Теперь, когда кривая окончательно готова, пришло время создать камеру, которая будет двигаться вдоль нее. Продолжим выполнение предыдущего упражнения.
Нам необходима возможность сохранять камеру постоянно нацеленной на дом. Поэтому нужно создать камеру с мишенью. Выберите в меню оперативного доступа команду Create > Cameras > Camera and Aim (Создать > Камеры > Камера и мишень).
Обратите внимание на появление в окне диалога Outliner (Структура) новой группы cameral_group. Если щелкнуть на квадратике со знаком «плюс», расположенном слева от имени этой группы, обнаружится, что она содержит два объекта — камеру и ее мишень. Присвойте группе имя CameraOnPath. Выделите мишень камеры, она носит название cameral_view. Дом расположен в начале координат, поэтому мишень нужно поместить именно туда. Введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов значение 0.
Убедитесь, что мишень камеры до сих пор выделена, и выделите в окне каналов имена параметров Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z). Щелкните на выделенной области правой кнопкой мыши и выберите в появившемся контекстом меню команду Lock Selected (Блокировка выделенного набора). Поля преобразования перемещения окажутся выделенными серым цветом, указывающим на то, что их значения заблокированы. Теперь вы лишены возможности случайно сместить положение мишени, например, в процессе облета камерой.
Для связывания камеры с кривой используем метод, с которым вы познакомились в главе 4. Выделите камеру и траекторию в окне диалога Outliner (Структура). В меню оперативного доступа выберите команду Animate > Motion Paths (Анимация > Траектории движения) и щелкните на квадратике, расположенном справа от команды Attach to Motion Path (Присоединить к траектории движения). Выберите команду Reset Settings (Сбросить настройки) в меню Edit (Правка) появившегося окна диалога. Снимите флажок Follow (Следовать), чтобы выключить вычисления ориентации объекта по мере его перемещения вдоль кривой, и нажмите кнопку Attach (Присоединить).
Перейдите в окно проекции Perspective (Перспектива) и поменяйте масштаб таким образом, чтобы можно было отчетливо наблюдать путь. Вы обнаружите, что в начале кривой появилась цифра 0, а в конце — цифра 600. Они соответствуют первому и последнему кадрам анимации. Подвигайте ползунок анимации туда и обратно, чтобы посмотреть на движение камеры вдоль кривой.
Выберите в меню Panels (Панели) окна проекции Perspective (Перспектива) команду Perspective > Cameral (Перспектива > Камера). Теперь сцена видна через объектив камеры. Открывшийся вид не совсем соответствует вашим ожиданиям. Выберите в меню View (Вид) окна проекции команду Camera Attribute Editor (Редактор параметров камеры) и введите в поле Far Clip Plane (Дальняя плоскость отсечки) значение 10 000. Затем выберите в этом же меню команду Camera Settings > Resolution Gate (Настройки камеры > Окно разрешения). Это приведет к появлению окна, ограничивающего область визуализации.
Запустите воспроизведение анимации. Если камера перемещается слишком низко над опорной поверхностью, отредактируйте форму и положение кривой. Не позволяйте камере опускаться ниже середины дома. В процессе редактирования пути следования камеры имейте в виду, что чем меньше управляющих точек используется для построения кривой, тем более гладкой она получается.
Сохраните сцену. Если вы хотите сравнить свой результат с тем, что получилось у нас, загрузите файл ch11tut022end.mb.
Создание траектории
Создание траектории
Для создания траектории движения будет использован метод, с которым вы уже познакомились в главе 4. При всей его простоте он дает потрясающие возможности управления положением камеры и скоростью ее движения в процессе воспроизведения анимации. Мы попытаемся имитировать съемку с операторского крана, применяемую при создании настоящего кино.
Для начала необходимо решить, что именно должно быть видно в окно камеры при ее перемещении. Мы расположим камеру в некотором отдалении, и она постепенно начнет двигаться по направлению к дому. Для правильной ориентации камеры и пути в сцене должны присутствовать опорная плоскость и схематичное представление дома. Оставьте видимыми только слои GroundL и OuterWallsL, чтобы ускорить обсчет сцены и освободить рабочее пространство.
Совет
СОВЕТ
Для максимального упрощения сцены оставляйте в ней только слои, необходимые для выполнения текущей процедуры.
Теперь нужно выбрать компоновку окон проекции, при которой удобнее всего работать над анимацией камеры. Для начала нажмите клавишу Пробел и перейдите в стандартное четырехоконное представление. Источники света видны во всех окнах проекции, но в данный момент они не представляют для нас интереса, поэтому выберите в меню оперативного доступа команду Display > Hide > Lights (Отображение > Скрыть > Источники света).
Проверим, где расположены плоскости отсечки для различных камер. Если вы видите, что в одном из окон проекции видна только часть сцены, значит, нужно изменить положение плоскости отсечки. Откройте окно диалога Attribute Editor (Редактор атрибутов) для камеры, создающей данную проекцию, выбрав в меню окна View (Вид) команду Attribute Editor (Редактор атрибутов камеры). В разделе Camera Attributes (Параметры камеры) введите в поле Far Clip Plane (Дальняя плоскость отсечки) значение 10 000, которое должно быть вполне удовлетворительным для выполнения этого упражнения.
Примечание
ПРИМЕЧАНИЕ
Для более эффективной работы камеры должны иметь ближнюю и дальнюю плоскости отсечки. В окне проекции отображается только участок сцены, находящийся между этими плоскостями. В Maya параметр Far Clip Plane (Дальняя плоскость отсечки) по умолчанию имеет значение 1000 единиц, что для большинства сцен является недостаточным. Если вид в окне проекции кажется вам странным или некоторые объекты оказываются невидимыми, проверьте, нельзя ли решить эту проблему, изменив указанный параметр. Камеры, создающие проекции Side (Вид сбоку). Тор (Вид сверху) и Front (Вид спереди), также имеют плоскости отсечки.
Сделайте так, чтобы в каждом из окон проекции можно было наблюдать как можно большее количество опорной поверхности. Если в данный момент координатная сетка является видимой, выберите в меню оперативного доступа команду Display > Grid (Отображение > Сетка).
Моделирование движения камеры
Упражнение. Моделирование движения камеры
В этом упражнении вам предстоит анимировать камеру, а затем сгладить ее движение путем редактирования ключей анимации. Нужно, чтобы камера переместилась из точки, расположенной справа от цилиндра, в точку, расположенную слева от параллелепипеда, пройдя этот путь по полуокружности и периодически приближаясь к показываемым объектам и удаляясь от них. После размещения ключей анимации для камеры и ее мишени нужно будет создать впечатление наличия у камеры массы. Это достигается редактированием положения касательной в первом и последнем ключах анимации.
Загрузите файл ch11tut01start.mb. Перейдите к стандартной четырехоконной конфигурации и выберите в меню оперативного доступа команду Create > Cameras > Camera and Aim (Создать > Камеры > Камера и мишень). Введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов значения 150, 40 и 9 соответственно. Во все поля преобразования Scale (Масштабирование) введите значение 50, чтобы немного увеличить значок камеры. Не снимая выделения с камеры, перейдите в окно проекции Perspective (Перспектива) и выберите в меню Panels (Панели) окна команду Look Through Selected (Вид из точки расположения выделенного объекта). Теперь вы наблюдаете сцену из точки расположения камеры. Ее перемещение будет приводить к изменению вида сцены. Откройте окно диалога Outliner (Структура), щелкните на квадратике со знаком «плюс», расположенном справа от имени группы Cameral_group, и выделите мишень камеры, которая называется cameral_view. Введите в поля Translate X (Смещение по оси X), Translate Y (Смещение по оси Y) и Translate Z (Смещение по оси Z) окна каналов значения 50, 11 и 8 соответственно.
Щелкните на кнопке с указывающей вниз стрелкой, которая расположена слева от кнопок маски выделения, и выберите в появившемся меню вариант All Objects Off (Исключить все объекты из выделения), как показано на Рисунок 11.2. Щелкните правой кнопкой мыши на седьмой слева кнопке маски выделения (она отмечена значком в виде сферы) и выберите в появившемся контекстном меню команду Cameras (Камеры). Теперь в сцене можно выделять только камеры.
и анимация объектов сцены закончены,
В этой главе
После того как моделирование и анимация объектов сцены закончены, остается только добавить камеру и визуализировать полученный результат. При этом нужно помнить, что камера является не просто альтернативным окном проекции, но и способом выражения вашего видения. Изменяя такие настройки, как масштаб и фокусное расстояние, можно создать впечатление, что мышь имеет размер дома, а небоскреб совсем крошечный. Камеры в Maya в отличие от реальных не имеют ни размера, ни массы, поэтому они могут проходить сквозь игольное ушко или внезапно менять направление движения. Правильное размещение камеры и выбор расположения объектов в кадре является целым искусством.
В компьютерной графике визуализацией называется процесс создания двумерного изображения трехмерной сцены. Эти изображения сохраняются в файлах, последовательный показ которых создает впечатление движения объектов. Кроме того, можно визуализировать набор статичных изображений, чтобы получить представление о том, как выглядит итоговая анимация с разных точек. В предыдущих упражнениях вам уже приходилось визуализировать полученные сцены, но в этой главе вы познакомитесь с деталями этого процесса. Вам предстоит изучить следующие темы:
Визуализация анимации
Визуализация анимации
Когда все готово для визуализации законченной анимации, нужно открыть окно диалога Render Globals (Общие параметры визуализации). Для обработки набора кадров применяется функция пакетной визуализации, которая использует настройки, сделанные вами в окне диалога Render Globals (Общие параметры визуализации). Его можно открыть, нажав кнопку Render the current frame (Визуализация текущего кадра) строки состояния или же выбрав в меню оперативного доступа команду Window > Rendering Editors > Render Globals (Окно > Редакторы визуализации > Общие параметры визуализации).
Визуализация статичных изображений
Визуализация статичных изображений
При необходимости визуализации одного из окон проекции необходимо перевести его в активное состояние и выбрать в меню оперативного доступа команду Render > Render Current Frame (Визуализация > Визуализация текущего кадра). Настройки, заданные в окне диалога Render Globals (Общие параметры визуализации), определяют разрешение, сглаживание и эффекты, получаемые с помощью трассирования. При этом визуализируется только один кадр, который сохраняется во временном файле в папке image вашего проекта. После окончания визуализации можно сохранить полученный результат. Для этого нужно щелкнуть правой кнопкой мыши в любой точке окна Render View (Визуализатор) и выбрать в появившемся меню команду File > Save Image (Файл > Сохранить изображение).
Визуализированные и сохраненные изображения можно просматривать с помощью служебной программы FCheck (Контроль файлов), окно которой показано на Рисунок 11.6.
чтобы уместить все объекты сцены
ВНИМАНИЕ
Если нажать комбинацию клавиш Shift+А, чтобы уместить все объекты сцены в границах окон проекции, или нажать клавишу f, чтобы сфокусироваться на опорной плоскости, может случиться так, что все объекты исчезнут. Эта проблема связана с размером опорной плоскости — камера отодвигается так далеко, что они оказываются за границей одной из плоскостей отсечки. Можно вернуть сцену к предыдущему состоянию, нажав клавишу [.
Разверните окно проекции Front (Вид спереди) на весь экран. В контекстном меню, вызываемом с помощью клавиатурной комбинации Ctrl+c, щелкните на квадратике, расположенном справа от команды CV Curve (Управляющие точки кривой). Убедитесь, что переключатель Curve Degree (Порядок кривой) стоит в положении 3 Cubic (Третий). Первую точку поместите над правым дальним углом опорной плоскости на высоте, примерно равной двойной высоте дома, то есть около 40 футов. Кривая должна идти с убывающим наклоном, постепенно спускаясь к плоскости и дому, не опускаясь, правда, ниже высоты 5 или 6 футов. Используйте Рисунок 11.7 в качестве опорного изображения. Помните, что кривая появляется только после создания первых четырех точек. На Рисунок 11.7 для ее построения были использованы двенадцать точек. При желании в дальнейшем ее форма может быть изменена.
Сайт: Аннимация - Видео - Графика